Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Структурные группы силикатов и алюмосиликатов.Содержание книги
Поиск на нашем сайте
Силикаты и алюмосиликаты представляют собой обширную группу минералов. Для них характерен сложный химический состав и изоморфные замещения одних элементов и комплексов элементов другими. Главными химическими элементами, входящими в состав силикатов, являются Si, O, Al, Fe2+, Fe3+, Mg, Mn, Ca, Na, K, а также Li, B, Be, Zr, Ti, F, H, в виде (OH)1- или H2O и др. Общее количество минеральных видов силикатов около 800. По распространённости на их долю приходится более 90 % минералов литосферы. Силикаты и алюмосиликаты являются породообразующими минералами. из них сложена основная масса горных пород: полевые шпаты, кварц, слюды, роговые обманки, пироксены, оливин и др. Самыми распространёнными являются минералы группы полевых шпатов и затем кварц, на долю которого приходится около 12 % от всех минералов. Структурные типы силикатов В основе структурного строения всех силикатов лежит тесная связь кремния и кислорода; эта связь исходит из кристаллохимического принципа, а именно из отношения радиусов ионов Si (0.39Å) и O (1.32Å). Каждый атом кремния окружён тетраэдрически расположенными вокруг него атомами кислорода. Таким образом, в основе всех силикатов находятся кислородные тетраэдры или группы [SiO4]3, которые различно сочетаются друг с другом. В зависимости от того, как сочетаются между собой кремнекислородные тетраэдры, различают следующие структурные типы силикатов. 1. Островные силикаты, то есть силикаты с изолированными тетраэдрами [SiO4]4- и изолированными группами тетраэдров: а) силикаты с изолированными кремнекислородными тетраэдрами (См. схему, а). Их радикал [SiO4]4-, так как каждый их четырёх кислородов имеет одну валентность. Между собой эти тетраэдры непосредственно не связаны, связь происходит через катионы; б) Островные силикаты с добавочными анионами О2-, ОН1-, F1- и др. в) Силикаты со сдвоенными тетраэдрами. Отличаются обособленными парами кремнекислородных тетраэдров [Si2O7]6-. Один из атомов кислорода у них общий (см. Схему, б), остальные связаны с катионами. г) Кольцевые силикаты. Характеризуются обособлением трёх, четырёх или шести групп кремнекислородных тетраэдров, образующих кроме простых колец (см. Схему в, г), также и «двухэтажные». Радикалы их [Si3O9]6-, [Si4O12]8-, [Si6O18]2-, [Si12O30]18-. Представители: оливины, гранаты, циркон, титанит, топаз, дистен, андалузит, ставролит, везувиан, каламин, эпидот,цоизит, ортит, родонит, берилл, кордиерит, турмалин и др. 2. Цепочечные силикаты, силикаты с непрерывными цепочками из кремнекислородных тетраэдров(см. Схему, д, е). Тетраэдры сочленяются в виде непрорывных обособленных цепочек. Их радикалы [Si2O6]4- и [Si3O9]6-. Представители: пироксены ромбические (энстатит, гиперстен) и моноклинные (диопсид, салит, геденбергит, авгит, эгирин, сподумен, волластонит, силлиманит). 3. Поясные (Ленточные) силикаты, это силикаты с непрерывными обособленными лентами или поясами из кремнекислородных тетраэдров (см. Схему, ж). Они имеют вид сдвоенных, не связанных друг с другом цепочек, лент или поясов. Радикал структуры [Si4O11]6-. Представители: тремолит, актинолит,жадеит, роговая обманка. 4. Листовые силикаты, это силикаты с непрерывными слоями кремнекислородных тетраэдров. (см. Схему, з). Радикал структуры [Si2O5]2-. Слои кремнекислородных тетраэдров обособлены друг от друга и связаны катионами. Представители: тальк, серпентин, хризотил-асбест, ревдинскит, полыгорскит, слюды (мусковит,флогопит, биотит), гидрослюды (вермикулит, глауконит), хлориты (пеннит, клинохлор и др), минералы глин (каолинит, хризоколла, гарниерит и др.), мурманит.
5. Силикаты с непрерывными трёхмерными каркасами, или каркасные силикаты (см. Схему, и). В этом случае все атомы кислорода общие. Такой каркас нейтрален. Радикал [SiO2]0. Именно такой каркас отвечает структуре кварца. На этом основании его относят не к окислам, а к силикатам. Разнообразие каркасных силикатов объясняется тем, что в них присутствуют аллюмокислородные тетраэдры. Замена четырёхвалентного кремния на трехвалентный алюминий вызывает появление одной свободной валентности, что в свою очередь влечет за собой вхождение других катионов (например калия и натрия).Ообычно отношение Al к Si равно 1:3 или 1:1. Зависимость облика и свойств от структуры Силикаты, структура которых представлена обособленными кремнекислородными тетраэдрами, имеют изометрический облик (гранаты), гексагональный берилл имеет обособленные шестерные кольца кремнекислородных тетраэдров, силикаты цепочечной и поясной структур обычно вытянуты (амфиболы, пироксены). Особенно наглядны в этом отношении листовые силикаты (слюды, тальк, хлориты). Слои кремнекислородных тетраэдров являются очень прочными, а их связи друг с другом через катионы менее прочная. Расщепить из легко вдоль слоёв. Этим вызывается их спайность и листоватый облик. Полезные ископаемые Силикаты — важные неметаллические полезные ископаемые: асбест, тальк, слюды, каолин, керамическое и огнеупорное сырьё, строительные материалы. Они также являются рудами на бериллий, литий, цезий, цирконий, никель, цинк и редкие земли. Кроме того они широко известны как драгоценные и поделочные камни: изумруд, аквамарин, топаз, нефрит, родонит и др. Происхождение (генезис) Эндогенное, главным образом магматическое (пироксены, полевые шпаты), они также характерны для пегматитов (слюды, турмалин, берилл и др.) и скарнов (гранаты, волластонит). Широко распространены в метаморфических породах — сланцах и гнейсах (гранаты, дистен, хлорит). Силикаты экзогенного происхождения представляют собой продукты выветривания или изменения первичных (эндогенных) минералов (каолинит, глауконит, хризоколла)
Алюмосиликаты алюмокремневые солеобразные соединения, к которым в природе относится группа широко распространённых минералов. В кристаллической структуре А. алюминий обладает, подобно кремнию, четверной тетраэдрической координацией (окружен четырьмя атомами кислорода) и даже кристалло-химически замещает кремний, т. е. химическая роль глинозёма близка (но не идентична) роли кремнезёма. Алюминий может входить в состав силикатов (См. Силикаты) и обладать, подобно магнию и прочим типичным основаниям, шестерной (октаэдрической) координацией. В этом случае соответствующие соединения являются силикатами алюминия, например минералы топаз, пирофиллит и др. При замене в структурных анионных комплексах силикатов кремнекислородного радикала (SiO4)4- на (AlO4)5- возникают дополнительные отрицательные заряды, которые в А. компенсируются вхождением дополнительных катионов — обычно К, Na или двухвалентных Ca, Ba с большими радиусами ионов. Среди минералов т. н. каркасные силикаты всегда являются А. К ним относятся А. калия — Ортоклаз и Микроклин (KAISi3O8), А. натрия — Альбит (NaAlSi3O8), А. кальция — Анортит (CaAlSi2O8) и др. Способность взаимозамещения групп NaSi на CaAl создаёт наличие ряда соединений типа твёрдых растворов с неограниченной смесимостью, называемых плагиоклазами. (См. Плагиоклазы) К А. относятся также Нефелин KNa3[AISiO4]4, Лейцит К[AlSi2O6], группа Скаполитов, цеолиты и др. А. распространены также среди силикатов слоистой структуры, где к ним относятся минералы группы слюд — мусковит KAl2•[AISi3O10]•(ОН)2 и др.; группы хрупких слюд, например Маргарит CaAl2[Al2Si2O10](OH)2; группы хлоритов, например амезит (Mg,Fe)4Al2[Al2Si2O10](OH)8, и др. Среди других структурно-химических типов силикатных минералов А. встречаются значительно реже (из силикатов ленточной структуры — роговая обманка, цепочечной — авгит, островной — кордиерит). Разрушение А. на поверхности Земли приводит к образованию минералов глин, реже гидрослюд, бокситов. Термин «А.» введён в минералогию русским учёным академиком В. И. Вернадским (См. Вернадский), впервые указавшим на аналогичную роль Al и Si при геохимических процессах и в составе природных соединений, что послужило основой созданной им алюмокислотной теории строения силикатов. Лит.: Вернадский В. И., Курбатов С. М., Земные силикаты, алюмосиликаты и их аналоги, 4 изд., М.— Л., 1937; Поваренных А. С,, Кристаллохимическая классификация минеральных видов, К., 1966. Г. П. Барсанов. Алюмосиликаты искусственные получают синтетическим путём. Наибольшее практическое значение имеют искусственные А. типа природных минералов цеолитов (См. Цеолиты) — т. н. Молекулярные сита и Пермутиты. Методы синтетического получения А. имитируют природные геохимические процессы, протекающие в среде перегретых водных растворов под давлением. Молекулярные сита получают в автоклавах в интервале температур 60—450 °С. Исходным материалом служат раствор алюмината натрия Na[AI(OH)4] и водная суспензия кремниевой кислоты nSiO2•mH2O с некоторой добавкой щёлочи. Получаемый из смеси алюмосиликатный гель промывают и сушат при температуре, близкой к 100°С. Молекулярные сита получают также рекристаллизацией некоторых минералов в концентрированных растворах солей. Пермутиты могут быть получены спеканием каолина Al4[Si4O10](OH)8 или полевого шпата KAISi3O8 с кварцем α-SiO2 и содой Na2CO3 при 1000°С и др. способами. Искусственные А. применяются в химической промышленности и др. отраслях, особенно широко — искусственные молекулярные сита, для процессов глубокой осушки, тонкой очистки и разделения газов, в хроматографическом анализе газов и жидкостей. Пермутиты служат главным образом для уменьшения жёсткости воды
Правила Полинга.
На основании обобщения довольно ограниченного экспериментального материала Л. Полинг еще в 1928 г. вывел пять правил, или принципов, которым должны подчиняться стабильные структуры существенно ионных кристаллов: 1) расстояние катион — анион в КП определяется суммой ионных радиусов, а КЧ — их отношением; 2) сумма валентных усилий катионов, сходящихся на анионах, должна быть численно равна или почти равна валентности аниона; 3) устойчивость структуры снижается при наличии общих ребер и особенно граней КП; 4) высоковалентиые и особенно мелкие по размеру катионы стремятся не иметь общих анионов; 5) число разных по.конструкции структурных фрагментов стремится к минимуму. Первое из этих правил суммирует более ранние правила Магнуса (1922) — Гольдшмидта (1926), согласно которым КЧ катиона определяется тем отношением его радиуса к радиусу аннона, при котором наступает соприкосновение между собой и «расталкивание» соседних анионов. Эти отношения, найденные из простых геометрических соображений, приведены в табл.33 для раз- ных КЧ. Там же приведены значения g = R/r-, где R — расстояние от центра полиэдра до его вершины (т. е. расстояние катион— анион), а г_ равно половине ребра полиэдра, т. е. расстояния анион — анион. Ясно, что значения g не зависят от выбора эффективных ионных радиусов. Можно отметить также, что g= (Г+/Г-) +1. Это правило намечает правильную тенденцию к уменьшению КЧ с уменьшением отношения г+/г_, но «критические» значения из табл. 33 не имеют смысла точных границ. Например, среди щелочных галогеиидов со структурой типа NaCl (КЧ—6, октаэдр) целый ряд веществ (например, CsF, RbF, KF, RbCl) по этому критерию должны были бы кристаллизоваться в структуре типа CsCl (K4 = 8f. куб) или даже давать плотнейшие упаковки одинаковых по размеру сфер (КЧ=12), а многие другие (например, LiCl, LiBr, Lil) — в структуре с КЧ=4. Второе правило Полиига—так называемое электростатическое правило валентностей — считается наиболее важным из пяти, поэтому рассмотрим его отдельно в разд. 4. Третье и четвертое правила Полинга тесно связаны между собой и имеют прямое от-ношение к тому факту, что появление общих реоер и осооенио граней КП приводит к сильному уменьшению расстояний между катионами, находящимися в их центрах. Так, расстояния между центрами октаэдров с общими вершинами, ребрами и гранями относятся как 1:0,71:0,58, а тетраэдров соответственно 1:0,53:0,33. При столь значительном сближении резко возраста- .ют силы отталкивания между катионами, что делает структуру неустойчивой. По этой причине БЮд-тетраэдры связываются друг с другом только вершинами. Более крупные TiOe-октаэдры могут иметь по два (рутил), три (брукит) и четыре (аиатаз) общих ребра, но только рутил является стабильной модификацией ТЮг... Пятое правило Полиига иногда называют «правилом экономичности» (парсимоиии). Оно имеет столь большое число исключений, что, по мнению Н. В. Белова, от него приходится отказаться. Примерами таких исключений являются четыре (!) неэквивалентные октаэдрические позиции для катионов одной и той же группы элементов в амфиболах, кислородные октаэдры и тетраэдры вокруг А1 в силлиманите и слюдах, октаэдрические и тет-раэдрические позиции Fe(H в синтетическом гранате Y3Fe2r6JFeWOi2 и т. п. Итоговое эмпирическое обобщение многочисленных наблюдений над атомным строением существенно ионных кристаллов выражено В. М. Гольдшмидтом в форме «основного закона кристаллохимии»: структура кристалла определяется количественным соотношением его структурных единиц, отношением их размеров и их поляризационными свойствами.
|
||||
Последнее изменение этой страницы: 2016-06-26; просмотров: 955; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.134.65 (0.01 с.) |