Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
до базиса векторного пространства.↑ ⇐ ПредыдущаяСтр 3 из 3 Содержание книги
Поиск на нашем сайте
Теорема 1. Пусть V – n-мерное векторное пространство над полем Р, (1) ā1,…,āk – линейно независимая система векторов из V. Тогда система (1) может быть дополнена до базиса векторного пространства V. Доказательство. Если k=n, то (1) – базис векторного пространства V. Пусть k < n. Рассмотрим линейную оболочку, натянутую на векторы системы (1): V1=L(ā1,…,āk)={ ā1+…+ āk| P, i= }. Отметим, что V1 V. Так как k<n, то V1 V. Пусть āk+1 V\V1. Покажем, что система ā1,…,āk,āk+1 (2) линейно независима. Допустим, что (2) – линейно зависимая система векторов вектор āk+1 является линейной комбинацией векторов ā1,…,āk āk+1 V1 – получили противоречие (2) –линейнонезависимая система векторов. Далее, пусть V2=L(ā1,…,āk, āk+1) и āk+2 V\V2. Тогда, как и выше, система ā1,…,āk, āk+1, āk+2 линейно независима. Продолжая этот процесс, получим линейно независимую систему, состоящую из n векторов, а это, ввиду dimpV=n, означает, что полученная система является базисом векторного пространства V. Теорема доказана. Пространство всех решений однородной системы уравнений. Фундаментальный набор решений однородной системы Линейных уравнений. Теорема 1. Пусть (1) - однородная система линейных уравнений над полем P, U – множество всех решений системы (1), т.е. U = - решение системы (1) . Тогда множество U является подпространством векторного пространства V=Pn. Доказательство проводится непосредственной проверкой с помощью критерия подпространства. Определение 1. Пусть (1) - однородная (неопределенная) система линейных уравнений над полем P, U – векторное пространство всех решений системы (1). Базис векторного пространства U называется фундаментальным набором решений однородной системы линейных уравнений (1). Найдём фундаментальный набор решений системы (1). Пусть x1,…,xk – главные неизвестные, остальные – свободные неизвестные. Составим систему векторов из U по следующему правилу (*): придадим первой свободной неизвестной значение 1, остальным свободным неизвестным – значение 0, получим вектор ; придадим второй свободной неизвестной значение 1, остальным свободным неизвестным – значение 0, получим вектор , и т.д. Получим систему вида: (2) . Покажем, что (2) – базис векторного пространства U. 1) Покажем, что система (2) линейно независима. Пусть (3) . Покажем, что i =0, i =1, . Из (3) => . Это означает, что система (2) линейно независима. 2) Покажем, что через векторы системы (2) линейно выражается каждый вектор из U. Пусть . Покажем, что вектор линейно выражается через (2). Рассмотрим вектор следующего вида: Так как (2) U, то . Поскольку и (1) -однородная система линейных уравнений, то => => линейно выражается через (2). Из 1) и 2) => система (2) - базис U => система (2) – фундаментальный набор решений системы (1). Вывод: Для того, чтобы найти фундаментальный набор решений однородной системы линейных уравнений, необходимо решить систему методом Гаусса и записать систему по правилу (*). Связь между решениями неоднородной системы линейных уравнений с решениями ассоциированной с ней однородной системы линейных уравнений. Лемма 1. Пусть (1) - неоднородная система линейных уравнений над полем P, (2) - однородная система линейных уравнений, ассоциированная с (1). Тогда выполняются следующие условия: 1) Если и - решения системы (1), то - решение системы (2). 2) Если - решение системы (1) и - решение (2), то - решение системы (1). Доказательство. 1) Так как - решение (1), то . Так как - решение (1), то . Тогда , => - решение системы (2). 2) Так как – решение системы (1), то . Так как – решение системы (2), то . Тогда , => - решение системы (1). Лемма доказана. Теорема 1. Пусть (1) - неоднородная система линейных уравнений над полем P, (2) - однородная система линейных уравнений, ассоциированная с (1), Н – множество всех решений системы (1), U - множество всех решений системы (2), - некоторое решение системы (1). Тогда Н = + U, где + U = . Доказательство. Докажем, что Н = + U методом встречных включений. а) Покажем, что . Пусть + U => = + ( – решение системы (2), - решение системы (1)) => - решение системы (1) => . б) Покажем, что . Пусть и - решение системы (1) - - решение системы (2) => - = => => . Из а) и б) следует, что Н = + U. Теорема доказана. Замечание. Из теоремы 12 следует, что для того, чтобы найти множество всех решений системы (1), достаточно найти множество всех решений системы (2) и хотя бы одно решение системы (1).
Строчечный и столбцовый ранги матрицы. Теорема Кронекера-Капелли. Рассмотрим матрицу A над полем P размера m×n следующего вида: . Пусть Определение 1. Вектор называется i-й вектор-строкой матрицы А, ; вектор называется j-м вектор-столбцом матрицы А, . Таким образом, (1) - система векторов-строк матрицы А, (2) - система векторов-столбцов матрицы А. Определение 2. Строчным (горизонтальным) рангом матрицы называется ранг её системы векторов-строк, и обозначается rг(A). Столбцовым (вертикальным) рангом матрицы называется ранг её системы векторов-столбцов и обозначается rв(A). Лемма 1. При элементарных преобразовании матрицы строчный и столбцовый ранги матрицы не изменяются. Теорема 1. Строчечный и столбцовый ранги матрицы А совпадают, т.е. rг(A)=rв(A); и обозначается r(A); число r(A) называется рангом матрицы А. Доказательство. Пусть А - матрица размера m×n над полем Р. Покажем что rг(A)=rв(A). Для этого приведём матрицу А с помощью элементарных преобразований к ступенчатому виду А' размера r×n: , где a'11 0, a'2k 0,…, a'rs 0. Так как по лемме 1 rг(A)= rг(A') и rв(A)= rв(A'), то достаточно показать, что rг(A')= rв(A'). Покажем что rг(A')=r. Рассмотрим систему векторов-строк матрицы А': (1'). Покажем, что ранг системы (1') равен r. Для этого достаточно показать, что (1') - линейно независимая система векторов. Пусть - нулевая линейная комбинация системы (1'). Покажем, что все коэффициенты . В координатной форме нулевая линейная комбинация имеет вид Умножая и складывая векторы покоординатно, получим систему уравнений И, поскольку выражая коэффициенты ai поочередно из всех уравнений, начиная с первого, получим Значит, (1') - линейно независимая система векторов. Тогда (1') - базис системы (1'), и значит, ранг системы (1') равен r, т.е. rг(A')=r. 2) Покажем, что rв(А')=r. Рассмотрим систему (2’) векторов-столбцов матрицы А'. Так как вектор имеет r координат, то Поскольку Pr - это r- мерное векторное пространство, т.е. dimpPr=r, то ранг системы (2) меньше либо равен r, т.е. rв(A')≤r. Рассмотрим систему векторов (3) (всего r векторов; эти векторы соответствуют элементам a'11 0, a'2k 0,…, a'rs 0). Покажем, что (3) - базис системы (2). а) Покажем, что (3) - линейно независимая система векторов. Пусть Так как ars 0, то из последнего равенства следует, что s =0; …; так как a2k 0, то из 2-го равенства следует, что k =0; так как a11 0, то из 1-го равенства следует 1= 0. Следовательно, (3) - линейно независимая система векторов. б) Так как (3) - линейно независимая система векторов, состоящая из r векторов, и dimpPr=r, то (3) - базис Pr. В силу (2') – система векторов из Pr, получаем, что (3) - базис системы (2'). Таким образом, rв(A')=r rг(A')= rв(A') rг(A)= rв(A). Теорема доказана. Исходя из доказанной теоремы, определение ранга матрицы часто формулируют следующим образом: Определение 3. Рангом матрицы A называется ранг её системы векторов-строк, и обозначается r(A). Теорема 1 (теорема Кронекера-Капелли). Пусть (4) - неоднородная система линейных уравнений над полем P, A и - соответственно основная и расширенная матрицы системы (4). Система (4) совместна r(A)=r(), причём, если r=n, то система (4) определена, а если r<n, то система (4) неопределена. Доказательство. Пусть система (4) совместна (4) имеет хотя бы одно решение (*), где (5) - система векторов-столбцов матрицы А, (6) - система векторов-столбцов матрицы . Равенство (*) выполняется вектор является линейной комбинацией векторов системы (5) ранг системы (6) равен рангу системы (5) rв(A)=rв() r(A)=r(). В случае, когда r(A)=r() исследование о том, является ли система (4) определенной или неопределенной, в зависимости от r и n, изложено в вопросе «Решение систем линейных уравнений методом Гаусса». Замечание. Однородная система линейных уравнений имеет единственное решение тогда и только тогда, когда ранг её матрицы равен числу неизвестных. Однородная система линейных уравнений имеет ненулевое решение тогда и только тогда, когда ранг её матрицы меньше числа неизвестных.
|
||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 417; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.16.47.89 (0.006 с.) |