Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Применяя формулу (1), получим↑ Стр 1 из 5Следующая ⇒ Содержание книги Поиск на нашем сайте
Следовательно,
4) Площадь грани А1 А2 А3 равна половине площади параллелограмма, построенного на векторах и . Обозначим через вектор векторное произведение векторов и , тогда площадь параллелограмма , а площадь грани Координаты вектора найдем по формуле (3):
(11; 2; 10)
кв. ед. 5) Объем пирамиды V в шесть раз меньше объема параллелепипеда V1, построенного на трех некомпланарных векторах, и равен абсолютной величине их смешанного произведения. Вычислим смешанное произведение :
Следовательно, V1 параллелепипеда равен 144 куб. ед., а объем заданной пирамиды V = 144/6 =24 куб. ед. 6) Уравнение прямой, проходящей через две заданные точки А1 (х1, y1, z1) и А2 (х2, y2, z2) имеет вид
(7)
Подставив в (7) координаты точек А1 и А2, получим
7) Уравнение плоскости А1А2А3 – это уравнение грани А1А2А3, которое найдено в п.3:
А1А2А3 : 2х – у – 2z – 3 = 0
8) Уравнение высоты, опущенной из вершины А4 на грань А1А2А3 – это перпендикуляр А4Д. Каноническое уравнение прямой в пространстве имеет вид
(8)
где х0, у0, z0 – координаты точки, через которую проходит прямая (8), а m, n, p – направляющие коэффициенты этой прямой. По условию прямая проходит через точку А4( 0; 1; 4) и перпендикулярные грани А!А2А3 для которой (2; -1; -2), т.е. подставив эти данные в формулу (8), получаем - уравнение высоты А4Д
Пример 3. Линия задана уравнением в полярной системе координат. Требуется: 1) построить линию по точкам, начиная от φ = 0 до φ = 2π и придавая φ значения через промежуток π/8; 2) найти уравнение данной линии в прямоугольной декартовой ситеме координат, у которой начало координат совпадает с полюсом, а положительная полуось абсцисс – с полярной осью; 3) по полученному уравнению определить, какая это линия.
Решение. 1) Построим линию по точкам от φ = 0 до φ = 2π, придавая φ значения через промежуток .
Составим таблицу:
Построим полученные точки в полярной системе координат (рис. 1).
Рис. 1. 2) Найдем уравнение данной линии в прямоугольной декартовой системе координат, у которой начало совпадает с полюсом, а положительная полуось абцисс ОХ – с полярной осью р. Для этого воспользуемся формулами перехода к прямоугольной декартовой системе координат х = rcosφ, y = rsinφ, откуда r2=x2+y2, тогда подставим эти формулы в данное уравнение , получаем:
Возведем в квадрат обе части последнего равенства:
Разделим обе части последнего уравнения на 24336:
Полученное уравнение – уравнение эллипса с центром в точке А (5; 0), полуоси которого
Проверим r(-φ), зная, что cosφ=cos(-φ)
Так как r(-φ)=r(φ), то данная линия будетсимметрична относительно полярной оси р и достаточно найти r(φ) для угловот φ=0 до φ=π.
Пример 4. Данную систему уравнений:
решить по формулам Крамера (через определитель) и средствами матричного исчисления (с помощью обратной матрицы). Обозначим через А матрицу коэффициентов при неизвестных; Х – м-цу - столбец неизвестных х1, х2, х3; В – м-цу – столбец свободных членов:
С учетом этих обозначений данная система уравнений примет следующую матричную форму:
(1)
Если матрица А – невырожденная (ее определитель ), то она имеет обратную матрицу А-1. умножив обе части уравнения (1) на А-1, получим:
,
но - единичная матрица, а ЕХ = Х, поэтому
(2)
Равенство (2) называется матричной записью решения системы линейных уравнений. Для нахождения решения системы уравнений необходимо выписать обратную матрицу А-1. Пусть имеем невырожденную матрицу и ее определитель равен Δ, тогда где Aij (i = 1,2,3; j = 1,2,3) – алгебраическое дополнение элемента aij в определителе матрицы А и
где Mij – минор (определитель) второго порядка, полученный вычеркиванием i –й строки и j – го столбца в определителе матрицы А. Вычислим определитель Δ и алгебраические дополнения Aij элементов матрицы А.
следовательно матрица А невырожденная и имеет обратную матрицу А -1.
тогда По формуле (2) находим решение данной системы уравнений в матричной форме:
отсюда х1=3, х2=0, х3=-2. Если определитель системы уравнений то такая система уравнений имеет одно определенное решение, получаемое по формулам
(3)
Формулы (3) называются формулами Крамера, где Δхi получается заменой i-го столбца в главном определителе Δ столбцом свободных членов. Если определитель системы Δ=0 и по крайней мере один из определителей , то такая система уравнений не имеет решения. Если же Δ=0 и все Δхi=0, то данная система уравнений либо не имеет решения, либо имеет бесчисленное множество решений. Определитель данной системы . Вычислим вспомогательные определители: Применяя формулы (3), находим: ΙΙ. Введение в математический анализ Пример 1. Дано комплексное число , требуется: 2) записать число а в алгебраической и тригонометрической формах; 3) найти все корни уравнения z3 + a = 0, . Решение. 1) Комплексным числом называется выражение
z = a + вi (1)
где а и в, действительные числа, а i – мнимая единица, которая определяется равенством i2=-1, ; а – действительная часть числа z, в – мнимая часть числа z. Равенство (1) называется алгебраической формой записи. Числа а + вi и а – вi, отличающиеся только знаком мнимой части, называются сопряженными комплексными числами. Умножим число а на множитель, сопряженным знаменателем:
Таким образом, имеем: - алгебраическая форма записи комплексного числа а. Всякое комплексное число z = a + вi можно изобразить на плоскости хОу, в виде точки А(а; в); - начало его в точке О(0; 0), а конец в точке А(а; в). Точками, лежащими на оси Ох, соответствуют действительные числа (в=0). Если же точка расположена на оси Оу, то она изображает чисто мнимое число, так как а=0. Поэтому ось Оу называют осью мнимых чисел или мнимой осью, а ось Ох – действительной осью. Рис 1.
Исходя из рис.2 a = r cosφ, в = r sinφ, где r и φ – полярные координаты точки А(а; в). Тогда тригонометрическая форма записи числа запишется в следующем виде:
или (2)
Величины r и φ выражаются через а и в формулами где - модуль, φ = arg z – аргумент комплексного числа z, который определяется с точностью до 2πk, k = 0, 1, 2, … Для данного комплексного числа Таким образом, - тригонометрическая форма записи комплексного числа. 2) Представим уравнение в виде или тогда , т.е. задача сводится к вычислению всех значений Корень n – ой степени из комплексного числа z = r (cos φ + i sin φ) имеет n различных значений, которые находятся по формуле
(3) где - арифметическое значение корня, а число k пробегает значения 0, 1, 2, …, n - 1.
Запишем выражение - в виде где Можно считать, что угол φ принадлежит 3-й четверти; φ = 270˚-α, где α - угол в 1-ой координатной четверти. Имеем тогда угол Итак, Придавая k последовательно значения 0, 1, 2, получим соответственно числа z1, z2, z0.
Пример 2. Если известен график функции у = f(x), то график функции вида у = kf(mx + b) + a можно построить последовательным преобразованием графика функции у = f(x). Покажем, например, как с помощью таких преобразований можно построить график функции у = -2sin(2x + 2), исходя из известного графика функции у = sinx. От функции у = sinx к функции у = - 2sin(2x + 2) можно перейти с помощью следующей цепочки преобразований:
y1 = sin2x1, y2 = - 2sin2x2, Y = - 2sin2(X + 1) = - 2sin(2X + 2). Геометрически это приводит к следующим построениям (рис.2): 1) Строим одну волну синусоиды у = sinx; . 2) Отмечаем на синусоиде несколько точек и уменьшаем в два раза их абсциссы, не изменяя ординат; таким образом мы отображаем точку (х; у) и точку (х1; у1), где х1 = х/2, у1 = у. Соединив полученные точки плавной линией, получим график функции у1 = sin2x1, являющийся результатом «сжатия» графика функции у = sinx к оси Оу в два раза. 3) Увеличиваем ординаты точек, построенных в предыдущем пункте в два раза, а затем меняем их знаки на противоположные, не изменяя абсцисс; таким образом отображаем точку (х1;у1) в точку (х2; у2), где у2 = - 2у1, х2 = х1. Соединив полученные точки плавной линией, получим график функции у2 = - 2sin2x2, являющейся результатом «растяжения» графика функции у1 = sin2x1 от оси Ох в два раза с последующим зеркальным отражением графика от оси Ох. 4) Переносим точки, построенные в предыдущем пункте, на –1 в направлении оси Ох (т.е. на единицу влево); таким образом мы отображаем точку (х2; у2) в точку (Х; Y), где Х = х2 - 1, Y = у2. Соединив полученные точки плавной линией, получим график функции Y = -2sin 2(X + 1) = - 2sin (2X + 2), являющийся результатом «сдвига» графика функции у2 = - 2sin 2х2 на –1 в направлении оси Ох. Искомый график функции у = - 2sin (2x +2) построен.
Рис. 2.
Пример 3. Найти пределы функции не пользуясь правилом Лопиталя: Решение. а) Под знаком предела имеется дробная рациональная функция и при х→∞ получается неопределенность вида . Чтобы найти предел дробной рациональной функции при х→∞, необходимо предварительно числитель и знаменатель дроби разделить на хn, где n – наивысшая степень многочленов Р(х) и Q(x). Разделим числитель и знаменатель данной дроби на х2 и применим основные теоремы о пределах и свойствах бесконечно малых величин: б) Непосредственная подстановка предельного значения аргумента х=2 приводит к неопределенности вида . Чтобы раскрыть эту неопределенность, умножим числитель и знаменатель дроби на сумму
в) Непосредственная подстановка предельного значения аргумента х=0 приводит к неопределенности . Известно, что при нахождении предела отношения двух бесконечно малых величин можно каждую из них (или только одну) заменить другой бесконечно малой, ей эквивалентной. Так как при х→∞ ln(1 + x)~ x, tg x ~ x, то ln(1 + 3x sin x) ~3x sin x, tg x2~ x2 и (используя 1-ый замечательный предел ). г) При х→∞ основание стремится к 1, а показатель степени (2х – 1)→∞. Следовательно, имеем неопределенность вида 1∞. Для ее раскрытия будем использовать II замечательный предел
Представим основание в виде суммы: единицы и некоторой бесконечно малой величины: . Тогда .
Положим х – 2 = 3у; при х → ∞ переменная у → ∞. Выразим показатель степени через новую переменную у. Так как х = 3у + 2, то 2х -1 = 2(3у + 2) – 1 = 6у + 3. Таким образом,
Пример 4. Дана функция у =161/(2+х). Требуется: 1) установить, является ли данная функция непрерывной или разрывной при значениях аргумента х1=-2, х2=0; 2) в случае разрыва функции найти ее пределы в точке разрыва справа и слева; 3) сделать схематический чертеж. Решение. Если ищется предел функции у=f(х) при условии, что аргумент х, стремясь к своему предельному значению а, может принимать только такие значения, которые меньше а, то этот предел, если он существует, называется левосторонним (левым) пределом данной функции в точке х = а и условно обозначается так: Если ищется предел функции у=f(х) при условии, что аргумент х, стремясь к своему предельному значению а, может принимать только такие значения, которые больше а, то этот предел если он существует, называется правосторонним (правым) пределом данной функции в точке х = а и условно обозначается так: Функция у = f(х) непрерывна в точке х = а, если выполнимы следующие условия: 1) функция у = f(х) определена не только в точке а, но и в некотором интервале, содержащем эту точку; 2) функция у = f(х) имеет при х→а конечные и равные между собой односторонние пределы; 3) односторонние пределы при х → а совпадают со значением функции в точке а, т.е. Если для данной функция у = f(х) в данной точке х = а хотя бы одно из перечисленных условий не выполняется, то функция называется разрывной в точке х = а. Разрыв функция у = f(х) в точке х = а называется разрывом первого рода, если существуют конечные односторонние пределы причем не все три числа f(a), f(a-0) и f(a+0) равны между собой. Если же хотя бы один из односторонних пределов не существует, то разрыв в точке х = а называется разрывом второго рода. При х = -2, данная функция не существует: в этой точке функция терпит разрыв. Определим односторонние пределы функции при х = -2 слева и справа: а и Таким образом, данная функция при х = -2 имеет разрыв второго рода. При х = 0 функция непрерывна, т.к. выполняются все три условные непрерывности функции. Данная функция является показательной. Прямая х = -2 – вертикальная асимптота графика функции. Множество значений функции – множество всех положительных чисел. у = 1 – горизонтальная асимптота, т.к. Чтобы построить функцию , составим следующую таблицу:
График функции показан на рис. 3.
Рис. 3.
Пример 5. Задана функция y = f (х) различными аналитическими выражениями для различных областей изменения аргумента х:
Найти: 1) точки разрыва функции, если они существуют; 2)предел функции у при приближении аргумента х к точке разрыва слева и справа; 3)найти скачок функции в точке разрыва. Решение. Данная функция определена и непрерывна в интервалах (-∞; 0), (0; π) и (π; + ∞). При х = 0 и х = π меняется аналитическое выражение функции и только в этих точках функция может иметь разрыв. Определим односторонние пределы в точке х = 0;
Так как односторонние пределы функции у в точке х = 0 не равны между собой, то в этой точке функция имеет разрыв первого рода. Скачком функции в точке разрыва называется абсолютная величина разности между ее правым и левым предельными значениями. Следовательно, в точке х = 0 скачок функции Δ=|1 - 0|=1. Определим односторонние пределы в точке х = π:
Односторонние пределы совпадают и функция в этой точке непрерывна. График функции показан на рис. 4.
Рис. 4.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 335; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.62.99 (0.012 с.) |