Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Теорема Бернулли и её следствия.↑ ⇐ ПредыдущаяСтр 3 из 3 Содержание книги
Поиск на нашем сайте
30-31 Сложение гармонических колебаний одинаковой частоты. x1=A1cos(wt+j1), x2=A2cos(wt+j2). Представим в комплексной форме: x=x1+x2=A1ei(wt+j1)+ A2ei(wt+j2)=eiwt(A1eij1+A2eij2), A1eij1+A2eij2=Aeij, A2=A12+A22+2 A1A2cos(j1–j2,), tg j=(A1sinj1+A2sinj2)/(A1cosj1+A2cosj2) Þ x=x1+x2=Aei(wt+j) Þ x=Acos(w t–j). Сложения гармонических колебаний с близкими частотами. x1=A1cos(w1t+j1), x2=A2cos(w2t+j2). Каждое из колебаний представим в комплексной форме, а сложение будем производить векторно. Пусть A1>A2. Cуммой двух колебаний с близкими частотами является колебание с изменяющейся амплитудой (от А1–А2 до А1+А2) и с частотой |w1–w2|. Колебания амплитуды с частотой W=|w1–w2| называются с биениями, а частота W – частотой биения. Законы Кеплера и закон всемирного тяготения. Первый закон Кеплера (1609 г.): Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце. Второй закон Кеплера (1609 г.): Радиус-вектор планеты описывает в равные промежутки времени равные площади. Третий закон Кеплера (1619 г.): Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит. Третий закон Кеплера выполняется для всех планет Солнечной системы с точностью выше 1 %. Закон всемирного тяготения Между двумя телами, массы которых равны m1 и m2, находящимися на расстоянии R друг от друга, действуют силы взаимного притяжения и, направленные от одного тела к другому, причем величина силы тяготения пропорциональна произведению масс обоих тел и обратно пропорциональна квадрату расстояния между ними:
47. Движение тел в поле центральных гравитационных сил. Константы (интегралы) движения. Связь момента импульса материальной точки с секториальной скоростью.Любые два тела (материальные точки) притягиваются друг к другу с силами, пропорциональными произведению их масс и обратно пропорциональными квадрату расстояния между ними. Такие силы называются гравитационными или силами всемирного тяготения. F=GMm/R2. Принцип суперпозиции гравитационных полей: гравитационное поле, возбуждаемое какой-либо массой, совершенно не зависит от наличия других масс. Гравитационное поле, создаваемое несколькими телами, равно геометрической сумме гравитационных полей, возбуждаемых этими телами в отдельности. Момент импульса, в частности, сохраняется для замкнутой системы материальных точек. Особый интерес представляют случаи центральных сил – их линии действия проходят через начало и, следовательно, суммарный момент относительно начала равен нулю, а следовательно, L=const. S’=sigma – секториальная скорость. L=m[rv]=const. |[rv]|dt=rv sin f dt=2*1/2 rv sin f dt=2dS.dS/dt=|L|/2m. sigma=|L|/2m. Космические скорости
Условие неразрывности струи утверждает, что при ламинарном течении жидкости произведение площади сечения участка, через который она протекает, на ее скорость является постоянной величиной для данной трубки тока.Sv = const. При описании физических законов течения крови по сосудам вводится допущение, что количество циркулирующей крови в организме постоянно. Отсюда следует формулировка условия неразрывности струи для реальной гемодинамики:В любом сечении сердечно-сосудистой системы объемная скорость. кровотока постоянна:Q = const.Под площадью сечения сосудистой системы понимают суммарную площадь сечения кровеносных сосудов одного уровня ветвления. Например, в большом круге кровообращения первое (наименьшее по площади) сечение проходит через аорту, второе - через все артерии, на которые непосредственно разветвляется аорта, и т.д. Наибольшую площадь имеет сечение, соответствующее капиллярной сети.Из условия неразрывности струи следует,что с увеличением площади сечения сосудистой системы скорость кровотока в ее соответствующих участках уменьшается.
36. Скорость распостранения волн Скорость распространения волн тем меньше, чем инертнее среда, т.е. чем больше ее плотность. С другой стороны, она имеет большее значение в более упругой среде, чем в менее упругой. Скорость продольных волн определяется по формуле: , а поперечной: где ρ- плотность среды, E - модуль Юнга, G - модуль сдвига. Так как для большинства твердых тел E>G то скорость продольных волн больше скорости поперечных. 33. Следовательно, колебания частиц в плоскости x будут отставать по времени на t от колебаний частиц в плоскости , т.е. – это уравнение плоской волны. Таким образом, x есть смещение любой из точек с координатой x в момент времени t. При выводе мы предполагали, что амплитуда колебания . Это будет, если энергия волны не поглощается средой. Такой же вид уравнение (5.2.3) будет иметь, если колебания распространяются вдоль оси y или z. В общем виде уравнение плоской волны записывается так: , или . Выражения (5.2.3) и (5.2.4) есть уравнения бегущей волны. Уравнение (5.2.3) описывает волну, распространяющуюся в сторону увеличения x. Волна, распространяющаяся в противоположном направлении, имеет вид: .
|
||||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 435; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.58.90 (0.008 с.) |