Иерархические и сетевые модели 
";


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Иерархические и сетевые модели



Модель называется иерархической (древовидной), если представима некоторой иерархической структурой (деревом).

Пример. Для решения задачи нахождения маршрута в дереве поиска можно построить, например, древовидную модель (рис. 1.2):

 

Рис. 1.2. Модель иерархической структуры

 

Модель называется сетевой, если она представима некоторой сетевой структурой.

Пример. Строительство нового дома включает операции, приведенные в нижеследующей таблице.

Таблица работ при строительстве дома
Операция Время выполнения (дни) Предшествующие операции Дуги графа
  Расчистка участка   нет -
  Закладка фундамента   Расчистка участка (1) 1-2
  Возведение стен   Закладка фундамента (2) 2-3
  Монтаж электропроводки   Возведение стен (3) 3-4
  Штукатурные работы   Монтаж электропроводки (4) 4-5
  Благоустройство территории   Возведение стен (3) 3-6
  Отделочные работы   Штукатурные работы (5) 5-7
  Настил крыши   Возведение стен (3) 3-8

Сетевая модель (сетевой график) строительства дома дана на рис. 1.3.

Рис. 1.3. Сетевой график строительства работ

 

Две работы, соответствующие дуге 4-8, параллельны, их можно либо заменить одной, представляющей совместную операцию (монтаж электропроводки и настил крыши) с новой операцией длительностью 3+5=8, либо ввести на одной дуге фиктивное событие.

Лингвистические модели

Модель называется языковой, лингвистической, если она представлена некоторым лингвистическим объектом, формализованной языковой системой или структурой.

Иногда такие модели называют вербальными, синтаксическими.

Например, правила дорожного движения - языковая, структурная модель движения транспорта и пешеходов на дорогах.

Пусть B - множество производящих основ существительных, C - множество суффиксов, P - прилагательных, bi – корень слова; "+" - операция конкатенации слов, ":=" - операция присваивания, "=>" - операция вывода (выводимости новых слов), Z - множество значений (смысловых) прилагательных.

Языковая модель M словообразования может быть представлена:

<pi> = <bi> + <сi>.

При bi - "рыб(а)", сi - "н(ый)", получаем по этой модели pi - "рыбный", zi - "приготовленный из рыбы".

Визуальные, натурные, геометрические модели

Модель визуальная, если она позволяет визуализировать отношения и связи моделируемой системы, особенно в динамике.

Например, на экране компьютера часто пользуются визуальной моделью того или иного объекта.

Модель натурная, если она есть материальная копия объекта моделирования.

Например, глобус - натурная географическая модель земного шара.

Модель геометрическая, графическая, если она представима геометрическими образами и объектами.

Например, макет дома является натурной геометрической моделью строящегося дома. Вписанный в окружность многоугольник дает модель окружности. Именно она используется при изображении окружности на экране компьютера. Прямая линия является моделью числовой оси, а плоскость часто изображается, как параллелограмм.

Система клеточных автоматов

Модель клеточно-автоматная, если она представима клеточным автоматом или системой клеточных автоматов.

Клеточный автомат - дискретная динамическая система, аналог физического (непрерывного) поля. Клеточно-автоматная геометрия - аналог евклидовой геометрии. Неделимый элемент евклидовой геометрии - точка, на основе ее строятся отрезки, прямые, плоскости и т.д.

Неделимый элемент клеточно-автоматного поля - клетка, на основе её строятся кластеры клеток и различные конфигурации клеточных структур. Представляется клеточный автомат равномерной сетью клеток ("ячеек") этого поля. Эволюция клеточного автомата разворачивается в дискретном пространстве - клеточном поле.

Смена состояний в клеточно-автоматном поле происходит одновременно и параллельно, а время идет дискретно. Несмотря на кажущуюся простоту их построения, клеточные автоматы могут демонстрировать разнообразное и сложное поведение объектов, систем.

В последнее время они широко используются при моделировании не только физических, но и социально-экономических процессов.

Фрактальные модели

Модель называется фрактальной, если она описывает эволюцию моделируемой системы эволюцией фрактальных объектов.

Если физический объект однородный (сплошной), т.е. в нем нет полостей, то можно считать, что его плотность не зависит от размера. Например, при увеличении параметра объекта R до 2R масса объекта увеличится в R2 раз, если объект- круг и в R3 раз, если объект - шар, т.е. существует связь массы и длины. Пусть n - размерность пространства. Объект, у которого масса и размер связаны называется "компактным". Его плотность можно рассчитать по формуле:

Если объект (система) удовлетворяет соотношению M(R) ~ Rf(n), где f(n) < n, то такой объект называется фрактальным.

Его плотность не будет одинаковой для всех значений R, то она масштабируется согласно формуле:

Так как f(n) - n < 0 по определению, то плотность фрактального объекта уменьшается с увеличением размера R, а ρ(R) является количественной мерой разряженности объекта.

Пример фрактальной модели - множество Кантора. Рассмотрим отрезок [0;1]. Разделим его на 3 части и выбросим средний отрезок. Оставшиеся 2 промежутка опять разделим на три части и выкинем средние промежутки и т.д. Получим множество, называемое множеством Кантора. В пределе получаем несчетное множество изолированных точек (рис. 1.4)

 

 

 

 

Рис. 1.4. Множество Кантора для 3-х делений

 



Поделиться:


Последнее изменение этой страницы: 2016-04-23; просмотров: 260; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.23.123 (0.004 с.)