Сканирующие зондовые микроскопы 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Сканирующие зондовые микроскопы



Введение

 

Микроскопия (МКС) (греч. μικρός — мелкий, маленький и σκοπέω — вижу) — изучение объектов с использованием микроскопа, наблюдение и регистрация увеличенных изображений образца.

Исторически сложилось несколько классов микроскопии:

· Оптическая микроскопия;

· Рентгеновская микроскопия;

· Электронная микроскопия;

· Сканирующая зондовая микроскопия;

Первоначально микроскопы были только оптическими приборами, использующими лучи видимого света, так как и глаз работает в оптическом диапазоне длин волн. Соответственно, оптические микроскопы не могли иметь разрешения менее полупериода волны опорного излучения (для видимого диапазона длина волн 0,4—0,7 мкм, или 400—700 нм) c возможным максимальным увеличением в 2000 раз.

Идея просвечивающего электронного микроскопа состояла в замене опорного электромагнитного излучения на электронный пучок. Известно, что для увеличения разрешения микроскопов, использующих электромагнитное излучение, необходимо уменьшение длины волны электромагнитного излучения до ультрафиолетового диапазона вплоть до рентгеновского (длина волны сопоставима с межатомными расстояниями в веществе) и основная трудность состоит в фокусировке ультрафиолетовых и, тем более, рентгеновских лучей.

Особенность взаимодействия рентгеновских лучей с веществом отличает рентгеновские оптические системы от оптических систем для световых и электронных лучей. Малое отклонение показателя преломления рентгеновских лучей от единицы (меньше чем на 10−4) практически не позволяет использовать для их фокусировки линзы и призмы. Электрические и магнитные линзы для этой цели также неприменимы, так как рентгеновские лучи инертны к электрическому и магнитному полям. Поэтому в рентгеновской микроскопии для фокусировки рентгеновских лучей используют явление их полного внешнего отражения изогнутыми зеркальными плоскостями или отражение от кристаллографических изогнутых плоскостей. На этом принципе построены отражательные рентгеновские микроскопы.

Степень проникновения в микромир, его изучения зависит от возможности рассмотреть величину микроэлемента, от разрешающей способности микроскопа. Чаще всего под разрешением микроскопа понимают минимальное расстояние между различимыми объектами.

При превышении увеличения при котором достигается возможное разрешение, границы деталей изображения сливаются из-за дифракции лучей. Дальнейшее увеличение изображения образца теряет смысл.

В оптической микроскопии в настоящее время сделан прорыв, в результате которого преодолен фундаментальный рэлеевский критерий, заключающийся в том, что минимальный размер различимого объекта несколько меньше длины волны используемого света и принципиально ограничен дифракцией излучения. Это был предел возможному в оптической микроскопии. До недавнего времени нельзя было преодолеть баръер, позволяющий различать структуры с расстоянием между элементами до 0,20 мкм.

Тем не менее выдающаяся последняя разработка оптической системы наноскопа с оптическим разрешением 10 нм расширило диапазон оптической микроскопии —наноскопии до десятков нанометров, что по сравнению с 0,20 мкм в 20 раз сократило расстояние между различаемыми элементами. (Например, размер белковых молекул, из которых состоит наш организм, колеблется от 3 до 10 нм).

Гораздо более высокое разрешение имеют электронные микроскопы. В 2011 году лучшее разрешение для растрового электронного микроскопа было 0,4 нм, и лучшее разрешение Просвечивающего электронного микроскопа было 0,05 нм.

 


 

Сканирующие зондовые микроскопы

 

Сканирующие зондовые микроскопы (СЗМ, англ. SPM — Scanning Probe Microscope) — класс микроскопов для получения изображения поверхности и её локальных характеристик. Процесс построения изображения основан на сканировании поверхности зондом. В общем случае позволяет получить трёхмерное изображение поверхности (топографию) с высоким разрешением. Сканирующий зондовый микроскоп в современном виде изобретен (принципы этого класса приборов были заложены ранее другими исследователями) Гердом Карлом Биннигом и Генрихом Рорером в 1981 году. За это изобретение были удостоены Нобелевской премии по физике за1986 год, которая была разделена между ними и изобретателем просвечивающего электронного микроскопа Э. Руска. Отличительной особенностью СЗМ является наличие:

· зонда,

· системы перемещения зонда относительно образца по 2-м (X-Y) или 3-м (X-Y-Z) координатам,

· регистрирующей системы.

Регистрирующая система фиксирует значение функции, зависящей от расстояния зонд-образца. Обычно регистрируемое значение обрабатывается системой отрицательной обратной связи, которая управляет положением образца или зонда по одной из координат (Z). В качестве системы обратной связи чаще всего используется ПИД-регулятор.

Основные типы сканирующих зондовых микроскопов:

· Сканирующий туннельный микроскоп;

· Ближнепольный оптическая микроскоп;

· Сканирующий атомно-силовой микроскоп;

В настоящий момент, в большинстве исследовательских лабораторий сканирующая зондовая и электронная микроскопия используются как дополняющие друг друга методы исследования в силу ряда физических и технических особенностей.

Принцип работы СЗМ

 

Работа сканирующего зондового микроскопа поверхности образца с зондом (кантилевер, игла или оптический зонд). При малом расстоянии между поверхностью и зондом действие сил взаимодействия (отталкивания, притяжения, и других сил) и проявление различных эффектов (например, туннелирование электронов) можно зафиксировать с помощью современных средств регистрации. Для регистрации используют различные типы сенсоров, чувствительность которых позволяет зафиксировать малые по величине возмущения. Для получения полноценного растрового изображения используют различные устройства развертки по осям X и Y (например, пьезотрубки, плоскопараллельные сканеры).

Основные технические сложности при создании сканирующего зондового микроскопа:

· Конец зонда должен иметь размеры сопоставимые с исследуемыми объектами.

· Обеспечение механической (в том числе тепловой и вибрационной) стабильности на уровне лучше 0,1 ангстрема (10-10).

· Детекторы должны надежно фиксировать малые по величине возмущения регистрируемого параметра.

· Создание прецизионной системы развёртки.

· Обеспечение плавного сближения зонда с поверхностью.

Особенности СЗМ

 

В сравнении с растровым электронным микроскопом (РЭМ) сканирующий зондовый микроскоп обладает рядом преимуществ. Так, в отличие от РЭМ, который даёт псевдо трёхмерное изображение поверхности образца, СЗМ позволяет получить истинно трёхмерный рельеф поверхности. Кроме того, в общем случае сканирующий зондовый микроскоп позволяет получать изображение как проводящей, так и непроводящей поверхности, тогда как для изучения непроводящих объектов с помощью РЭМ необходимо металлизировать поверхность. Для работы с РЭМ необходим вакуум, в то время как большая часть режимов СЗМ предназначена для исследований на воздухе, вакууме и жидкости. Благодаря этому, с помощью СЗМ возможно изучать материалы и биологические объекты в нормальных для этих объектов условиях. Например, изучение биомакромолекул и их взаимодействий, живых клеток. В принципе, СЗМ способен дать более высокое разрешение чем РЭМ. Так было показано, что СЗМ в состоянии обеспечить реальное атомное разрешение в условиях сверхвысокого вакуума при отсутствии вибраций. Сверхвысоковакуумный СЗМ по разрешению сравним с просвечивающим электронным микроскопом.

К недостатку СЗМ при его сравнении с РЭМ также следует отнести небольшой размер поля сканирования. РЭМ в состоянии просканировать область поверхности размером в несколько миллиметров в латеральной плоскости с перепадом высот в несколько миллиметров в вертикальной плоскости. У СЗМ максимальный перепад высот составляет несколько микрометров, как правило не более 25 мкм, а максимальное поле сканирования в лучшем случае порядка 150×150 микрометров. Другая проблема заключается в том, что качество изображения определяется радиусом кривизны кончика зонда, что при неправильном выборе зонда или его повреждении приводит к появлению артефактов на получаемом изображении. При этом подготовка образцов для СЗМ занимает меньше времени, чем для РЭМ.

Обычный СЗМ не в состоянии сканировать поверхность также быстро, как это делает РЭМ. Для получения СЗМ-изображения требуется от нескольких минут до нескольких часов, в то время как РЭМ после откачки способен работать практически в реальном масштабе времени хотя и с относительно невысоким качеством. Из-за низкой скорости развёртки СЗМ получаемые изображения оказываются искажёнными тепловым дрейфом, что уменьшает точность измерения элементов сканируемого рельефа. Для увеличения быстродействия СЗМ было предложено несколько конструкций, среди которых можно выделить зондовый микроскоп, названный видеоАСМ. ВидеоАСМ обеспечивает получение удовлетворительного качества изображений поверхности с частотой телевизионной развёртки, что даже быстрее, чем на обычном РЭМ. Однако, применение ВидеоАСМ ограничено, так как он работает только в контактном режиме и на образцах с относительно небольшим перепадом высот. Для коррекции вносимых термодрейфом искажений было предложено несколько способов.

Нелинейность, гистерезис и ползучесть (крип) пьезокерамики сканера также являются причинами сильных искажения СЗМ-изображений. Кроме того, часть искажений возникает из-за взаимных паразитных связей, действующих между X, Y, Z-манипуляторами сканера. Для исправления искажений в реальном масштабе времени современные СЗМ используют программное обеспечение (например, особенность–ориентированное сканирование) либо сканеры, снабжённые замкнутыми следящими системами, в состав которых входят линейные датчики положения. Некоторые СЗМ вместо сканера в виде пьезотрубки используют XY и Z-элементы, механически несвязанные друг с другом, что позволяет исключить часть паразитных связей. Однако в определённых случаях, например, при совмещении с электронным микроскопом или ультрамикротоками конструктивно оправдано использование именно сканеров на пьезотрубках.

АСМ. История создания

 

Атомно-силовой микроскоп (АСМ, англ. AFM — atomic-force microscope) - сканирующий зондовый микроскоп высокого разрешения. Используется для определения рельефа поверхности с разрешением от десятков ангстрем вплоть до атомарного.

Атомно-силовой микроскоп был создан в 1982 году Гердом Биннигом, Кельвином Куэйтом и Кристофером Гербером в США, как модификация изобретённого ранее сканирующео туннельного микроскопа.

Для определения рельефа поверхностей непроводящих тел использовалась упругая консоль (кантилевер), отклонение которой, в свою очередь, определялось по изменению величины туннельного тока, как в сканирующем туннельном микроскопе. Однако такой метод регистрации изменения положения кантилевера оказался не самым удачным, так как с помощью СТМ можно было исследовать только вещества, проводящие ток, и двумя годами позже была предложена оптическая схема: луч лазера направляется на внешнюю поверхность кантилевера, отражается и попадает на фотодетектор. Такой метод регистрации отклонения кантилевера реализован в большинстве современных атомно-силовых микроскопов.

Изначально атомно-силовой микроскоп фактически представлял собой профилометр, только радиус закругления иглы был порядка десятков ангстрем. Стремление улучшить латеральное разрешение привело к развитию динамических методов. Пьезовибратором возбуждаются колебания кантилевера с определённой частотой и фазой. При приближении к поверхности на кантилевер начинают действовать силы, изменяющие его частотные свойства. Таким образом, отслеживая частоту и фазу колебаний кантилевера, можно сделать вывод об изменении силы, действующей со стороны поверхности и, следственно, о рельефе.

Дальнейшее развитие атомно-силовой микроскопии привело к возникновению таких методов, как магнитно-силовая микроскопия, силовая микроскопия пьезоотклика, электро-силовой микроскопии.

Принцип работы АСМ

 

Качественно работу АСМ можно пояснить на примере сил Ван-дер-Ваальса. Наиболее часто энергию ван-дер-ваальсова взаимодействия двух атомов, находящихся на расстоянии r друг от друга, аппроксимируют степенной функцией - потенциалом Леннарда-Джонса:

(1)

 
 

Первое слагаемое в данном выражении описывает дальнодействующее притяжение, обусловленное, в основном, диполь - дипольным взаимодействием атомов. Второе слагаемое учитывает отталкивание атомов на малых расстояниях. Параметр r0 – равновесное расстояние между атомами, U0 - значение энергии в минимуме.

Рисунок 1-Качественный вид потенциала Леннарда-Джонса

Потенциал Леннарда-Джонса позволяет оценить силу взаимодействия зонда с образцом [33]. Общую энергию системы можно получить, суммируя элементарные взаимодействия для каждого из атомов зонда и образца.

Тогда для энергии взаимодействия получаем:

(2)

 

где и - плотности атомов в материале образца и зонда. Соответственно сила, действующая на зонд со стороны поверхности, может быть вычимлена следующим образом:

(3)

В общем случае данная сила имеет как нормальную к поверхности, так и латеральную (лежащую в плоскости поверхности образца) составляющие. Реальное взаимодействие зонда с образцом имеет более сложный характер, однако основные черты данного взаимодействия сохраняются - зонд АСМ испытывает притяжение со стороны образца на больших расстояниях и отталкивание на малых.

Получение АСМ изображений рельефа поверхности связано с регистрацией малых изгибов упругой консоли зондового датчика. В атомно-силовой микроскопии для этой цели широко используются оптические методы.

 

 

Рисенок 2 – Схема оптической регистрации изгиба консоли зондового датчика АСМ

Оптическая система АСМ юстируется таким образом, чтобы излучение полупроводникового лазера фокусировалось на консоли зондового датчика, а отраженный пучок попадал в центр фоточувствительной области фотоприемника. В качестве позиционно - чувствительных фотоприемников применяются четырехсекционные полупроводниковые фотодиоды.

Рисунок 3 – Соответствие между типом изгибных деформаций консоли зондового датчика и изменением положения пятна засветки в фотодиоде

Основные регистрируемые оптической системой параметры - это деформации изгиба консоли под действием Z-компонент сил притяжения или отталкивания (FZ) и деформации кручения консоли под действием латеральных компонент сил (FL) взаимодействия зонда с поверхностью. Если обозначить исходные значения фототока в секциях фотодиода через I01, I02, I03, I04, а через I1, I2, I3, I4 - значения токов после изменения положения консоли, то разностные токи с различных секций фотодиода ∆Ii = Ii - I0i будут однозначно характеризовать величину и направление изгиба консоли зондового датчика АСМ. Действительно, разность токов вида

ΔIZ=(ΔI1+ΔI2)-(ΔI3+ΔI4) (4)

пропорциональна изгибу консоли под действием силы, действующей по нормали к поверхности образца (рисунок 3 (а)).

А комбинация разностных токов вида

ΔIL=(ΔI1+ΔI4)-(ΔI2+ΔI3) (5)

характеризует изгиб консоли под действием латеральных сил (рисунок 3(б)).

Величина ∆IZ используется в качестве входного параметра в петле обратной связи атомно-силового микроскопа (рисунок 4). Система обратной связи (ОС) обеспечивает ∆ IZ = const с помощью пьезоэлектрического исполнительного элемента, который поддерживает изгиб консоли ∆Z равным величине ∆Z0, задаваемой оператором.

 

Рисунок 4 – Упрощённая схема организации обратной связи в атомно-силовом микроскопе

При сканировании образца в режиме ∆Z = const зонд перемещается вдоль поверхности, при этом напряжение на Z-электроде сканера записывается в память компьютера в качестве рельефа поверхности Z = f (x,y). Пространственное разрешение АСМ определяется радиусом закругления зонда и чувствительностью системы, регистрирующей отклонения консоли. В настоящее время реализованы конструкции АСМ, позволяющие получать атомарное разрешение при исследовании поверхности образцов.

 

 

Зондовые датчики АСМ

 

Зондирование поверхности атомно-силовом микроскопе производится, как уже было сказано, с помощью специальных зондовых датчиков, представляющих собой упругую консоль – канталевер (cantilever) с острым зондом на конце (рисунок 5). Датчики изготавливаются методами фотолитографии и травления из кремниевых пластин. Упругие консоли формируются, в основном, из тонких слоев легированного кремния, SiO2 или Si3N4.

Рисунок 5 – Схематичное изображение зондового датчика АСМ

Один конец кантилевера жестко закреплен на кремниевом основании - держателе. На другом конце консоли располагается собственно зонд в виде острой иглы. Радиус закругления современных АСМ зондов составляет 1 ÷ 50 нм в зависимости от типа зондов и технологии их изготовления. Угол при вершине зонда - 10 ÷ 20 º. Силу взаимодействия зонда с поверхностью F можно оценить следующим образом:

(6)

Где k – жёсткость кантилевера; - величина, характеризующая его изгиб. Коэффициенты жесткости кантилеверов k варьируются в диапазоне 10-3 ÷ 10 Н/м в зависимости от используемых при их изготовлении материалов и геометрических размеров. При работе зондовых АСМ датчиков в колебательных режимах важны резонансные свойства кантилеверов.

Собственные частоты изгибных колебаний консоли прямоугольного сечения определяются следующей формулой

, (7)

где l – длина консоли; E – модуль Юнга; J – момент инерции сечения консоли; ρ – плотность материала; S – площадь поперечного сечения; - численный коэффициент (в диапозоне 1÷100), зависящий от моды изгибных колебаний.

Рисунок 6 – Основные моды изгибных колебаний консоли

Частоты основных мод лежат в диапозоне 10÷1000 кГц. Добротность кантилеверов, в основном, зависит от той среды, в которой они работают. Типичные значения добротности при работе в вакууме составляют 103 - 104. На воздухе добротность снижается до 300-500, а в жидкости падает до 10-100.

В атомно-силовой микроскопии применяются, в основном, зондовые датчики двух типов – с кантилевером в виде балки прямоугольного сечения и с треугольным кантилевером, образованным двумя балками.

Рисунок 7 – Электронно-микроскопическое изображение АСМ зонда, расположенного на прямоугольной консоли

Иногда зондовые датчики АСМ имеют несколько кантилеверов различной длины (а значит, и различной жесткости) на одном основании. В этом случае выбор рабочей консоли осуществляется соответствующей юстировкой оптической системы атомно-силового микроскопа.

Зондовые датчики с треугольным кантилевером имеют при тех же размерах большую жесткость и, следовательно, более высокие резонансные частоты. Чаще всего они применяются в колебательных АСМ методиках.

Рисунок 8 – Электронно-микроскопическое изображениеАСМ зонда, расположенного на треугольном кантилевре

Изготовление зондовых датчиков для АСМ представляет собой достаточно сложный технологический процесс, включающий в себя операции фотолитографии, ионной имплантации, химического и плазменного травления. Основные этапы одной из возможных технологий изготовления зондовых датчиков представлены на рисунке 9.

 

Колебательные методики АСМ

 

Для исследования образцов, обладающих малой механической жесткостью, применяются колебательные АСМ методики, основанные на регистрации параметров взаимодействия колеблющегося кантилевера с поверхностью. Данные методики позволят существенно уменьшить механическое воздействие зонда на поверхность в процессе сканирования. Кроме того, развитие колебательных методик существенно расширило арсенал возможностей АСМ по измерению различных свойств поверхности образцов.

 

Введение

 

Микроскопия (МКС) (греч. μικρός — мелкий, маленький и σκοπέω — вижу) — изучение объектов с использованием микроскопа, наблюдение и регистрация увеличенных изображений образца.

Исторически сложилось несколько классов микроскопии:

· Оптическая микроскопия;

· Рентгеновская микроскопия;

· Электронная микроскопия;

· Сканирующая зондовая микроскопия;

Первоначально микроскопы были только оптическими приборами, использующими лучи видимого света, так как и глаз работает в оптическом диапазоне длин волн. Соответственно, оптические микроскопы не могли иметь разрешения менее полупериода волны опорного излучения (для видимого диапазона длина волн 0,4—0,7 мкм, или 400—700 нм) c возможным максимальным увеличением в 2000 раз.

Идея просвечивающего электронного микроскопа состояла в замене опорного электромагнитного излучения на электронный пучок. Известно, что для увеличения разрешения микроскопов, использующих электромагнитное излучение, необходимо уменьшение длины волны электромагнитного излучения до ультрафиолетового диапазона вплоть до рентгеновского (длина волны сопоставима с межатомными расстояниями в веществе) и основная трудность состоит в фокусировке ультрафиолетовых и, тем более, рентгеновских лучей.

Особенность взаимодействия рентгеновских лучей с веществом отличает рентгеновские оптические системы от оптических систем для световых и электронных лучей. Малое отклонение показателя преломления рентгеновских лучей от единицы (меньше чем на 10−4) практически не позволяет использовать для их фокусировки линзы и призмы. Электрические и магнитные линзы для этой цели также неприменимы, так как рентгеновские лучи инертны к электрическому и магнитному полям. Поэтому в рентгеновской микроскопии для фокусировки рентгеновских лучей используют явление их полного внешнего отражения изогнутыми зеркальными плоскостями или отражение от кристаллографических изогнутых плоскостей. На этом принципе построены отражательные рентгеновские микроскопы.

Степень проникновения в микромир, его изучения зависит от возможности рассмотреть величину микроэлемента, от разрешающей способности микроскопа. Чаще всего под разрешением микроскопа понимают минимальное расстояние между различимыми объектами.

При превышении увеличения при котором достигается возможное разрешение, границы деталей изображения сливаются из-за дифракции лучей. Дальнейшее увеличение изображения образца теряет смысл.

В оптической микроскопии в настоящее время сделан прорыв, в результате которого преодолен фундаментальный рэлеевский критерий, заключающийся в том, что минимальный размер различимого объекта несколько меньше длины волны используемого света и принципиально ограничен дифракцией излучения. Это был предел возможному в оптической микроскопии. До недавнего времени нельзя было преодолеть баръер, позволяющий различать структуры с расстоянием между элементами до 0,20 мкм.

Тем не менее выдающаяся последняя разработка оптической системы наноскопа с оптическим разрешением 10 нм расширило диапазон оптической микроскопии —наноскопии до десятков нанометров, что по сравнению с 0,20 мкм в 20 раз сократило расстояние между различаемыми элементами. (Например, размер белковых молекул, из которых состоит наш организм, колеблется от 3 до 10 нм).

Гораздо более высокое разрешение имеют электронные микроскопы. В 2011 году лучшее разрешение для растрового электронного микроскопа было 0,4 нм, и лучшее разрешение Просвечивающего электронного микроскопа было 0,05 нм.

 


 

Сканирующие зондовые микроскопы

 

Сканирующие зондовые микроскопы (СЗМ, англ. SPM — Scanning Probe Microscope) — класс микроскопов для получения изображения поверхности и её локальных характеристик. Процесс построения изображения основан на сканировании поверхности зондом. В общем случае позволяет получить трёхмерное изображение поверхности (топографию) с высоким разрешением. Сканирующий зондовый микроскоп в современном виде изобретен (принципы этого класса приборов были заложены ранее другими исследователями) Гердом Карлом Биннигом и Генрихом Рорером в 1981 году. За это изобретение были удостоены Нобелевской премии по физике за1986 год, которая была разделена между ними и изобретателем просвечивающего электронного микроскопа Э. Руска. Отличительной особенностью СЗМ является наличие:

· зонда,

· системы перемещения зонда относительно образца по 2-м (X-Y) или 3-м (X-Y-Z) координатам,

· регистрирующей системы.

Регистрирующая система фиксирует значение функции, зависящей от расстояния зонд-образца. Обычно регистрируемое значение обрабатывается системой отрицательной обратной связи, которая управляет положением образца или зонда по одной из координат (Z). В качестве системы обратной связи чаще всего используется ПИД-регулятор.

Основные типы сканирующих зондовых микроскопов:

· Сканирующий туннельный микроскоп;

· Ближнепольный оптическая микроскоп;

· Сканирующий атомно-силовой микроскоп;

В настоящий момент, в большинстве исследовательских лабораторий сканирующая зондовая и электронная микроскопия используются как дополняющие друг друга методы исследования в силу ряда физических и технических особенностей.

Принцип работы СЗМ

 

Работа сканирующего зондового микроскопа поверхности образца с зондом (кантилевер, игла или оптический зонд). При малом расстоянии между поверхностью и зондом действие сил взаимодействия (отталкивания, притяжения, и других сил) и проявление различных эффектов (например, туннелирование электронов) можно зафиксировать с помощью современных средств регистрации. Для регистрации используют различные типы сенсоров, чувствительность которых позволяет зафиксировать малые по величине возмущения. Для получения полноценного растрового изображения используют различные устройства развертки по осям X и Y (например, пьезотрубки, плоскопараллельные сканеры).

Основные технические сложности при создании сканирующего зондового микроскопа:

· Конец зонда должен иметь размеры сопоставимые с исследуемыми объектами.

· Обеспечение механической (в том числе тепловой и вибрационной) стабильности на уровне лучше 0,1 ангстрема (10-10).

· Детекторы должны надежно фиксировать малые по величине возмущения регистрируемого параметра.

· Создание прецизионной системы развёртки.

· Обеспечение плавного сближения зонда с поверхностью.

Особенности СЗМ

 

В сравнении с растровым электронным микроскопом (РЭМ) сканирующий зондовый микроскоп обладает рядом преимуществ. Так, в отличие от РЭМ, который даёт псевдо трёхмерное изображение поверхности образца, СЗМ позволяет получить истинно трёхмерный рельеф поверхности. Кроме того, в общем случае сканирующий зондовый микроскоп позволяет получать изображение как проводящей, так и непроводящей поверхности, тогда как для изучения непроводящих объектов с помощью РЭМ необходимо металлизировать поверхность. Для работы с РЭМ необходим вакуум, в то время как большая часть режимов СЗМ предназначена для исследований на воздухе, вакууме и жидкости. Благодаря этому, с помощью СЗМ возможно изучать материалы и биологические объекты в нормальных для этих объектов условиях. Например, изучение биомакромолекул и их взаимодействий, живых клеток. В принципе, СЗМ способен дать более высокое разрешение чем РЭМ. Так было показано, что СЗМ в состоянии обеспечить реальное атомное разрешение в условиях сверхвысокого вакуума при отсутствии вибраций. Сверхвысоковакуумный СЗМ по разрешению сравним с просвечивающим электронным микроскопом.

К недостатку СЗМ при его сравнении с РЭМ также следует отнести небольшой размер поля сканирования. РЭМ в состоянии просканировать область поверхности размером в несколько миллиметров в латеральной плоскости с перепадом высот в несколько миллиметров в вертикальной плоскости. У СЗМ максимальный перепад высот составляет несколько микрометров, как правило не более 25 мкм, а максимальное поле сканирования в лучшем случае порядка 150×150 микрометров. Другая проблема заключается в том, что качество изображения определяется радиусом кривизны кончика зонда, что при неправильном выборе зонда или его повреждении приводит к появлению артефактов на получаемом изображении. При этом подготовка образцов для СЗМ занимает меньше времени, чем для РЭМ.

Обычный СЗМ не в состоянии сканировать поверхность также быстро, как это делает РЭМ. Для получения СЗМ-изображения требуется от нескольких минут до нескольких часов, в то время как РЭМ после откачки способен работать практически в реальном масштабе времени хотя и с относительно невысоким качеством. Из-за низкой скорости развёртки СЗМ получаемые изображения оказываются искажёнными тепловым дрейфом, что уменьшает точность измерения элементов сканируемого рельефа. Для увеличения быстродействия СЗМ было предложено несколько конструкций, среди которых можно выделить зондовый микроскоп, названный видеоАСМ. ВидеоАСМ обеспечивает получение удовлетворительного качества изображений поверхности с частотой телевизионной развёртки, что даже быстрее, чем на обычном РЭМ. Однако, применение ВидеоАСМ ограничено, так как он работает только в контактном режиме и на образцах с относительно небольшим перепадом высот. Для коррекции вносимых термодрейфом искажений было предложено несколько способов.

Нелинейность, гистерезис и ползучесть (крип) пьезокерамики сканера также являются причинами сильных искажения СЗМ-изображений. Кроме того, часть искажений возникает из-за взаимных паразитных связей, действующих между X, Y, Z-манипуляторами сканера. Для исправления искажений в реальном масштабе времени современные СЗМ используют программное обеспечение (например, особенность–ориентированное сканирование) либо сканеры, снабжённые замкнутыми следящими системами, в состав которых входят линейные датчики положения. Некоторые СЗМ вместо сканера в виде пьезотрубки используют XY и Z-элементы, механически несвязанные друг с другом, что позволяет исключить часть паразитных связей. Однако в определённых случаях, например, при совмещении с электронным микроскопом или ультрамикротоками конструктивно оправдано использование именно сканеров на пьезотрубках.

АСМ. История создания

 

Атомно-силовой микроскоп (АСМ, англ. AFM — atomic-force microscope) - сканирующий зондовый микроскоп высокого разрешения. Используется для определения рельефа поверхности с разрешением от десятков ангстрем вплоть до атомарного.

Атомно-силовой микроскоп был создан в 1982 году Гердом Биннигом, Кельвином Куэйтом и Кристофером Гербером в США, как модификация изобретённого ранее сканирующео туннельного микроскопа.

Для определения рельефа поверхностей непроводящих тел использовалась упругая консоль (кантилевер), отклонение которой, в свою очередь, определялось по изменению величины туннельного тока, как в сканирующем туннельном микроскопе. Однако такой метод регистрации изменения положения кантилевера оказался не самым удачным, так как с помощью СТМ можно было исследовать только вещества, проводящие ток, и двумя годами позже была предложена оптическая схема: луч лазера направляется на внешнюю поверхность кантилевера, отражается и попадает на фотодетектор. Такой метод регистрации отклонения кантилевера реализован в большинстве современных атомно-силовых микроскопов.

Изначально атомно-силовой микроскоп фактически представлял собой профилометр, только радиус закругления иглы был порядка десятков ангстрем. Стремление улучшить латеральное разрешение привело к развитию динамических методов. Пьезовибратором возбуждаются колебания кантилевера с определённой частотой и фазой. При приближении к поверхности на кантилевер начинают действовать силы, изменяющие его частотные свойства. Таким образом, отслеживая частоту и фазу колебаний кантилевера, можно сделать вывод об изменении силы, действующей со стороны поверхности и, следственно, о рельефе.

Дальнейшее развитие атомно-силовой микроскопии привело к возникновению таких методов, как магнитно-силовая микроскопия, силовая микроскопия пьезоотклика, электро-силовой микроскопии.

Принцип работы АСМ

 

Качественно работу АСМ можно пояснить на примере сил Ван-дер-Ваальса. Наиболее часто энергию ван-дер-ваальсова взаимодействия двух атомов, находящихся на расстоянии r друг от друга, аппроксимируют степенной функцией - потенциалом Леннарда-Джонса:

(1)

 
 

Первое слагаемое в данном выражении описывает дальнодействующее притяжение, обусловленное, в основном, диполь - дипольным взаимодействием атомов. Второе слагаемое учитывает отталкивание атомов на малых расстояниях. Параметр r0 – равновесное расстояние между атомами, U0 - значение энергии в минимуме.

Рисунок 1-Качественный вид потенциала Леннарда-Джонса

Потенциал Леннарда-Джонса позволяет оценить силу взаимодействия зонда с образцом [33]. Общую энергию системы можно получить, суммируя элементарные взаимодействия для каждого из атомов зонда и образца.

Тогда для энергии взаимодействия получаем:

(2)

 

где и - плотности атомов в материале образца и зонда. Соответственно сила, действующая на зонд со стороны поверхности, может быть вычимлена следующим образом:

(3)

В общем случае данная сила имеет как нормальную к поверхности, так и латеральную (лежащую в плоскости поверхности образца) составляющие. Реальное взаимодействие зонда с образцом имеет более сложный характер, однако основные черты данного взаимодействия сохраняются - зонд АСМ испытывает притяжение со стороны образца на больших расстояниях и отталкивание на малых.

Получение АСМ изображений рельефа поверхности связано с регистрацией малых изгибов упругой консоли зондового датчика. В атомно-силовой микроскопии для этой цели широко используются оптические методы.

 

 

Рисенок 2 – Схема оптической регистрации изгиба консоли зондового датчика АСМ



Поделиться:


Последнее изменение этой страницы: 2016-04-23; просмотров: 2790; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.166.214 (0.097 с.)