Методы уплотнения волоконно-оптических линий связи



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Методы уплотнения волоконно-оптических линий связи



Метод временного уплотнения подразделяется на два вида — асинхронное или плезиохронное, временное мультиплексирование (PDH, ATM) и синхронное временное мультиплексирование (SDH). Современные технологии позволяют обеспечить скорость передачи группового сигнала 10 Гбит/с (STM-64). Благодаря развитию новых электронных технологий (полупроводниковые структуры на основе арсенида галлия, микровакуумных элементов) уже созданы лабораторные образцы электронных мультиплексоров для скорости 40 Гбит/с (STM-256).

Временное уплотнение предполагает объединение нескольких низкоскоростных потоков в 1 высокоскоростной. Уплотнение производится на уровне как эл-их так и оптич-их сигналов. При передаче как на уровне эл-их, так и оптич-их сигналов требуется формировать короткие импульсы.

 

Метод частотного уплотнения (FDM)

При частотном методе мультиплексирования (FDM — FrequencyDivisionMultiplexing) каждый информационный поток передается по физическому каналу на соответствующей частоте — поднесущейƒпн. Если в качестве физического канала выступает оптическое излучение — оптическая несущая, то она модулируется по интенсивности групповым информационным сигналом, спектр которого состоит из ряда частот поднесущих, количество которых равно числу компонентных информационных потоков. Частота поднесущей каждого канала выбирается исходя из условия ƒпн ≥ 10ƒвчп, где ƒпн — частота поднесущей, ƒвчп — верхняя частота спектра информационного потока. Частотный интервал между поднесущимиΔƒпн выбирается из условия Δƒпн ≥ ƒвчп.

На приемной стороне оптическая несущая попадает на фотодетектор, на нагрузке которого выделяется электрический групповой поток, поступающий после усиления в широкополосном усилителе приема на входы узкополосных фильтров, центральная частота пропускания которых равна одной из поднесущих частот.

В качестве компонентных потоков могут выступать как цифровые, так и аналоговые сигналы, В настоящее время в кабельных системах передачи частотное уплотнение применяется в многоканальном кабельном телевидении, где для этой цели отведен диапазон частот 47 - 860 МГц, т.е. как метровый, так и дециметровый диапазоны ТВ.

 

Уплотнение по поляризации (PDM)

Уплотнение потоков информации с помощью оптических несущих, имеющих линейную поляризацию, называется уплотнением по поляризации (PDM — PolarizationDivisionMultiplexing). При этом плоскость поляризации каждой несущей должна быть расположена под своим углом. Мультиплексирование осуществляется с помощью специальных оптических призм, например, призмы Рошона. Поляризационное мультиплексирование возможно только тогда, когда в среде передачи отсутствует оптическая анизотропия, т.е. волокно не должно иметь локальных неоднородностей и изгибов. Это одна из причин весьма ограниченного применения данного метода уплотнения. В частности, он применяется в оптических изоляторах, а также в оптических волоконных усилителях, которые используются в устройствах накачки эрбиевого волокна для сложения излучения накачки двух лазеров, излучение которых имеет выраженную поляризацию в виде вытянутого эллипса.

 

Многоволновое мультиплексирование оптических несущих (WDM)

Решение задачи дальнейшего роста пропускной способности ВОСП путем увеличения скорости передачи при помощи TDM ограничивается не только технологическими сложностями при электронном временном уплотнении, но и ограничениями, вызванными временной (хроматической) дисперсией оптических импульсов в процессе их распространения в ОВ. Это наглядно видно из сопоставления допустимых величин хроматической дисперсии для систем передачи STM-16 и STM-64 соответственно: 10500 пс/нм и 1600 пс/нм и поляризационной модовой дисперсии — 40 пс и 10 пс.

Указанная выше задача успешно решается с помощью оптического мультиплексирования с разделением по длинам волн — WDM (WavelengthDivisionMultiplexing). Суть этого метода состоит в том, что m информационных цифровых потоков, переносимых каждый на своей оптической несущей на длине волны λm и разнесенных в пространстве, с помощью специальных устройств — оптических мультиплексоров (ОМ) — объединяются в один оптический поток λ1 λm, после чего он вводится в оптическое волокно. На приемной стороне производится обратная операция демультиплексирования. Примерная структурная схема такой системы с WDM представлена на рис. 1.1.

Оптические параметры систем WDM регламентируются рекомендациями, в которых определены длины волн и оптические частоты для каждого канала. Согласно этим рекомендациям, многоволновые системы передачи работают в 3-ем окне прозрачности ОВ, т.е. в диапазоне длин волн 1530-1565 нм. Для этого установлен стандарт длин волн, представляющий собой сетку оптических частот, в которой расписаны регламентированные значения оптических частот в диапазоне 196,1-192,1 ТГц с интервалами 100 ГГц и длины волн - 1528,77-1560,61 нм с интервалом 0,8 нм. Стандарт состоит из 41 длины волны, т.е. рассчитан на 41 спектральный канал. Но на практике используется 39 каналов из представленной сетки частот, поскольку два крайних не используются, так как они находятся на склонах частотной характеристики оптических усилителей, применяемых в системах WDM.

Рис. 1.1. Простейшая структурная схема системы передачи WDM.

 
 

В последнее время установилась четкая тенденция уменьшения частотного интервала между спектральными каналами до 50 ГГц и даже до 25 ГГц, что приводит к более плотному расположению спектральных каналов в отведенном диапазоне длин волн (1530-1565 нм). Такое уплотнение получило название DWDM. Очевидно, что DWDM вызвано стремлением увеличить количество передаваемых каналов. Отметим также, что в настоящее время аббревиатура DWDM закрепилась и для систем с многоволновым уплотнением, у которых частотный интервал между каналами равен 100 ГГц.

В настоящее время в оборудовании систем связи с DWDM, рассчитанных для передачи до 32-х каналов, ряд фирм применяет длину волны 1510 нм, а некоторые — 1625 нм. Но с увеличением количества передаваемых каналов до 128 и более возникает необходимость освоения более длинноволновой части оптического спектра, в частности L-диапазона (или 4-е окно прозрачности ОВ), в который будет входить длина волны 1625 нм.

Создание систем передачи DWDM потребовало разработки целого ряда как активных, так и пассивных квантовых и оптических элементов и устройств с высокостабильными параметрами. Сюда относятся полупроводниковые лазеры с узкой спектральной шириной линии излучения (менее 0,05 нм) при стабильности не хуже ± 0,04 нм. Волоконно-оптические усилители должны иметь стабильный коэффициент усиления, малую неравномерность коэффициента усиления, (< ± 0,5 дБ) во всем спектральном диапазоне усиления и ряд других характеристик. Среди пассивных элементов наиболее ответственными являются оптические мультиплексоры/ демультиплексоры для большого количества каналов при работе в одном окне прозрачности (1530-1565 нм). Расстройка по длине волны этих элементов не должна превышать 0,05 нм. Такая стабильность обеспечивается жесткой температурной стабилизацией этих элементов с точностью не хуже ± 1°С. Все это резко повышает стоимость систем DWDM.

 

26) Солитонные сети, преимущества, недостатки, перспективы развития

Солитон — это импульс, который не изменяет своей формы по мере того, как он распространяется по волокну. Он не уширяется под влиянием дисперсии и нелинейностей волокна. Солитон демонстрирует баланс между нелинейностью и дисперсией. Нелинейности волокна противодействуют накапливанию дисперсии при распространении импульса по волокну. Солитоны должны поддерживать определенную обособленность один от другого при передаче последовательности бит информационного потока. Это предохраняет солитоны от взаимодействия, которое может оказаться деструктивным. Для того чтобы достичь необходимой обособленности двух соседних солитонных импульсов, разработчик системы вынужден использовать в качестве формата линейного кодирования RZ (возвращение к нулю), а не NRZ, который является общепринятым. При использовании формата RZ солитон занимает только малую часть битового интервала (битового периода), обеспечивая тем самым достаточную обособленность соседних бит.

Формирование фундаментального солитона может быть полезным, однако, солитоны другого порядка приводят к существенному ухудшению передаваемого сигнала. Следовательно, формирование солитонов более высокого порядка устанавливает предел максимальной мощности, которая может быть введена в волокно.



Последнее изменение этой страницы: 2016-04-23; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.239.58.199 (0.011 с.)