Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Центральные предельные теоремыСодержание книги Поиск на нашем сайте
Центральная предельная теорема (для одинаково распределенных слагаемых). Пусть X1, X2,…, Xn, …– независимые одинаково распределенные случайные величины с математическими ожиданиями M(Xi) = m и дисперсиями D(Xi) = , i = 1, 2,…, n,… Тогда для любого действительного числа х существует предел
где Ф(х) – функция стандартного нормального распределения. Эту теорему иногда называют теоремой Линдеберга-Леви [3, с.122]. В ряде прикладных задач не выполнено условие одинаковой распределенности. В таких случаях центральная предельная теорема обычно остается справедливой, однако на последовательность случайных величин приходится накладывать те или иные условия. Суть этих условий состоит в том, что ни одно слагаемое не должно быть доминирующим, вклад каждого слагаемого в среднее арифметическое должен быть пренебрежимо мал по сравнению с итоговой суммой. Наиболее часто используется теорема Ляпунова. Центральная предельная теорема (для разнораспределенных слагаемых) – теорема Ляпунова. Пусть X1, X2,…, Xn, …– независимые случайные величины с математическими ожиданиями M(Xi) = mi и дисперсиями D(Xi) = , i = 1, 2,…, n,… Пусть при некотором δ>0 у всех рассматриваемых случайных величин существуют центральные моменты порядка 2+δ и безгранично убывает «дробь Ляпунова»:
где
Тогда для любого действительного числа х существует предел (1) где Ф(х) – функция стандартного нормального распределения. В случае одинаково распределенных случайных слагаемых
и теорема Ляпунова переходит в теорему Линдеберга-Леви. Теорема Линдеберга-Феллера. Пусть X1, X2,…, Xn, …– независимые случайные величины с математическими ожиданиями M(Xi) = mi и дисперсиями D(Xi) = , i = 1, 2,…, n,… Предельное соотношение (1), т.е. центральная предельная теорема, выполнено тогда и только тогда, когда при любом τ>0
где Fk (x) обозначает функцию распределения случайной величины Xk. Необходимое и достаточное условие многомерной сходимости [3, с.124]. Пусть Fn обозначает совместную функцию распределения k -мерного случайного вектора , n = 1,2,…, и Fλn – функция распределения линейной комбинации . Необходимое и достаточное условие для сходимости Fn к некоторой k -мерной функции распределения F состоит в том, что Fλn имеет предел для любого вектора λ. Теорема о многомерной сходимости. Пусть Fn и Fλn – те же, что в предыдущей теореме. Пусть F - совместная функция распределения k -мерного случайного вектора . Если функция распределения Fλn сходится при росте объема выборки к функции распределения Fλ для любого вектора λ, где Fλ – функция распределения линейной комбинации , то Fn сходится к F. Здесь сходимость Fn к F означает, что для любого k -мерного вектора такого, что функция распределения F непрерывна в , числовая последовательность Fn сходится при росте n к числу F . Многомерная центральная предельная теорема [3]. Рассмотрим независимые одинаково распределенные k -мерные случайные вектора где штрих обозначает операцию транспонирования вектора. Предмет математической статистики. Математическая статистика — это раздел математики, посвященный методам сбора, анализа и обработки статистических данных для научных и практических целей. Статистические данные представляют собой данные, полученные в результате обследования большого числа объектов или явлений (то есть, математическая статистика имеет дело с массовыми явлениями). Методы анализа массовых явлений — предмет многих научных дисциплин; но только в том случае, когда для анализа привлекаются формальные (абстрактные) математические модели, эти методы становятся статистическими. Математическая статистика подразделяется на две обширные области:
|
||||||||
Последнее изменение этой страницы: 2016-04-21; просмотров: 275; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.137.252 (0.006 с.) |