Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Способы дополнения однокартинного чертежа

Поиск

Способ с числовыми отметками. Суть способазаключается в том, что недостающая в плоскости проекций пространственная координата отмечается на чертеже числом. Этот способ широко применяется в топографии, при пост-роении профиля дорог, в том числе железнодорожного пути.

Способ академика Федорова. Принципиальное отличие от предыдущего способа состоит в том, что числовые отметки заменяются масштабными отрезками. Способ в основном применяется в кристаллографии.

Способ составления аксонометрических проекции применяют в строительных и машиностроительных чертежах в основном для наглядного изображения предмета.

Способ составления комплексного чертежа наиболее широко применяется при составлении строительных и машиностроительных чер-
тежей.

 

2. ТОЧКА, ПРЯМАЯ И ПЛОСКОСТЬ НА КОМПЛЕКСНОМ

ЧЕРТЕЖЕ ОТНОСИТЕЛЬНО ПЛОСКОСТЕЙ ПРОЕКЦИЙ

 

Прежде чем перейти к изображению геометрических элементов на комп-лексном чертеже, рассмотрим положение некоторой точки А в пространственной системе координат – X, Y, Z (рис. 2.1).

Спроецируем ортогонально точку А на три взаимоперпендикулярные плоскости проекций П123 и получим проекции этой точки: А1 – горизонтальная; А2 – фронтальная,
А3 – профильная. Координаты Аx, Ay, Az определяют положение этой точки в пространстве. Такое наглядное изображение точки, находящейся в пространстве, дает представление о расположении точки относительно плоскостей проекций П1, П2, П3. Однако в этом случае искажаются действительные размеры в системе координат и, самое главное, затрудняется чтение чертежа при изображении сложных предметов. Французский геометр Г. Монж предложил перейти от такого изображения предмета к комплексному чертежу. Комплексный чертеж – это ортогональное изображение предмета на две или более взаимоперпендикулярные плоскости проекций, совмещенные с плоскостью чертежа. Это совмещение происходит следующим образом: плоскости П1 и П3 поворачиваются относительно осей X и Z до положения,
когда они составляют одну плоскость с П2 (рис. 2.2).

На таком комплексном чертеже точка будет изображаться своими проекциями. Чтобы точка на чертеже была задана, достаточно иметь две ее проекции. Размеры представляются на комплексном чертеже в натуральную величину. Предмет можно изучать спереди, сверху, слева, но при этом необходимо иметь навыки пространственного представления на таком чертеже.

Прямая на комплексном чертеже может быть задана двумя точками или своими проекциями. Минимальное количество проекций прямой на чертеже – две (рис. 2.3).

а б

Рис. 2.3

 

Плоскость на комплексном чертеже может быть задана тремя точками, точкой и прямой, двумя пересекающимися прямыми, двумя параллельными прямыми, плоской геометрической фигурой (треугольник, окружность и т. д.) и др. Плоскость на комплексном чертеже определяют две ее проекции (рис. 2.4).

 

3. ПРЯМЫЕ И ПЛОСКОСТИ ОБЩЕГО И ЧАСТНОГО ПОЛОЖЕНИЯ ОТНОСИТЕЛЬНО ПЛОСКОСТЕЙ ПРОЕКЦИЙ

 

Прямые общего положения

Прямые общего положения наклонены ко всем плоскостям проекций и пересекают их. Точки пересечения прямой с плоскостями проекций называются следами прямой. Иногда бывает необходимо их определять. Пусть на чертеже дана прямая а, определим ее следы (рис. 3.1).

Чтобы определить точку пересечения прямой с горизонтальной плоскостью проекций – горизонтальный след, надо продолжить фронтальную проекцию прямой аα до пересечения с осью X, провести перпендикуляр к оси X, продолжить горизонтальную проекцию прямой а1 до пересечения с перпендикуляром. Горизонтальный след обозначается буквой Н. Необходимо обратить внимание на то, что сама точка Н присутствует на чертеже, так как Z = 0, т. е. точка принадлежит плоскости П1.

Чтобы определить фронтальный след F, надо продолжить горизонтальную проекцию прямой до пересечения с осью X, провести перпендикуляр к оси X, продолжить фронтальную проекцию прямой до пересечения с перпендикуляром. Точка F также присутствует на чертеже и совпадает со своей фронтальной проекцией, так как координата Y = 0.

Прямые частного положения

Прямые частного положения расположены параллельно плоскостям проекций или перпендикулярно им.

Прямые, параллельные плоскостям проекций П1, П2, П3, называются горизонталью (h), фронталью (f) и профильной прямой (p) (рис. 3.2).

а б в

 

Рис. 3.2

 

Прямые, перпендикулярные плоскости проекций П1, П2, П3, называются горизонтально (а), фронтально (б) и профильно (в) проецирующими (рис. 3.3).

а б в

 

Рис. 3.3

Плоскости общего положения

Плоскости общего положения наклонены ко всем плоскостям проекций и пересекают их. Линии пересечения плоскости с плоскостями проекции называются следами. Часто плоскость задают следами. Чтобы перейти к заданию плоскости следами, необходимо определить следы двух прямых, лежащих в этой плоскости. Пусть дана плоскость треугольником АВС. Определим следы этой плоскости (рис. 3.4).

 

Сначала определим фронтальный след плоскости. Для этого построим фронтальные следы двух сторон треугольника – АВ и ВС. Через полученные точки F и F' проводим фронтальный след плоскости f 0 до пересечения с осью X и получаем точку схода следов S, из которой пойдет и горизонтальный след плоскости. Для этого построения достаточно определить горизонтальный след одной какой-либо прямой (например, АС). Тогда через S и H проводим h0 – горизонтальный след плоскости. След плоскости можно строить, проводя его через один след какой-то прямой параллельно направлению линии уровня (горизонтали или фронтали), так как горизонталь и фронталь – это линии, параллельные горизонтальному и фронтальному следам плоскости соответственно.



Поделиться:


Последнее изменение этой страницы: 2016-04-21; просмотров: 203; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.189.143.1 (0.009 с.)