Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Назначение средних величин, их виды.Содержание книги Поиск на нашем сайте
Обобщающие значения признака статистической совокупности полученной по опр. правилу. Виды: 1. средняя арифметическая простая равна сумме отдельных значений признака, деленной на число этих значений. Х= Ехj/n, xj-отдельное значение признака n- кол-во; простая средняя арифметическая применяется в случаях, когда имеются отдельные значения признака, т.е. данные не сгруппированы. Если данные представлены в виде рядов распределения или группировок, то средняя определяется иначе, по формуле средней арифметической взвешенной Х= Еxjnj/Enj xj-отдельн значение признака nj-частоты с которыми встречаются значения признака. Средняя гармоническая величина простая X= n/E1/xj, средняя гармоническая взвешенная X=Enj/Enj/xj, средняя геометрическая величина используется для расчета средних темпов роста. Средняя хронологическая используется для расчета средних остатков товароматериальных ценностей или денежных средств. Мода- значение признака, которое чаще всего встречается в изучаемой совокупности (Мо). Медиана (Ме) значение признака делящая упорядочную по возрастанию совокупности значений признаков на две равные части. 7. Методы расчета среднего арифметического простого и взвешенного, примеры в экономике. Различают среднюю простую и взвешенную. Средняя арифметическая простая равна сумме отдельных значений признака, деленной на число этих значений. Среднее значение признака обозначается через Х (с палочкой вверху) Средняя арифметическая простая равна: Х= Ехj/n Х1- отдельное значение признака, n- количество значений признака. Средняя арифметическая применяется в тех случаях, когда имеются отдельные значения признака, т.е. данные не сгруппированы. Пример 1. Бригада из 6 рабочих получает в месяц 3 3,2 3,3 3,5 3,8 3,1 тыс.руб. Найти среднюю заработную плату Решение: (3 + 3,2 + 3,3 +3,5 + 3,8 + 3,1) / 6 = 3,32 тыс. руб. Если объем совокупности данных большой и представляет собой ряд распределения, то исчисляется взвешенная среднеарифметическая величина. Так определяют средневзвешенную цену за единицу продукции: общую стоимость продукции (сумму произведений ее количества на цену единицы продукции) делят на суммарное количество продукции. Х= Еxjnj/Enj xj-отдельн значение признака nj-частоты с которыми встречаются значения признака.
Средняя арифметическая для интервального ряда
При расчете средней арифметической для интервального вариационного ряда сначала определяют среднюю для каждого интервала, как полусумму верхней и нижней границ, а затем — среднюю всего ряда. В случае открытых интервалов значение нижнего или верхнего интервала определяется по величине интервалов, примыкающих к ним.
Методы расчета среднего гармонического простого и взвешенного Средняя гармоническая. Эту среднюю называют обратной средней арифметической, поскольку эта величина используется при k = -1. Простая средняя гармоническая используется тогда, когда веса значений признака одинаковы: К примеру, нам нужно вычислить среднюю скорость двух автомашин, прошедших один и тот же путь, но с разной скоростью: первая - со скоростью 100 км/ч, вторая - 90 км/ч. Применяя метод средней гармонической, мы вычисляем среднюю скорость: В статистической практике чаще используется гармоническая взвешенная, формула которой имеет вид Данная формула используется в тех случаях, когда веса (или объемы явлений) по каждому признаку не равны. В исходном соотношении для расчета средней известен числитель, но неизвестен знаменатель.
Методы расчета и назначения среднего геометрического и хронологического. Примеры. Средняя геометрическая. Чаще всего средняя геометрическая находит свое применение при определении средних темпов роста (средних коэффициентов роста), когда индивидуальные значения признака представлены в виде относительных величин. Она используется также, если необходимо найти среднюю между минимальным и максимальным значениями признака (например, между 100 и 1000000). Существуют формулы для простой и взвешенной средней геометрической.
Для простой средней геометрической
Для взвешенной средней геометрической
Средняя квадратическая величина. Основной сферой ее применения является измерение вариации признака в совокупности (расчет среднего квадратического отклонения).
Формула простой средней квадратической
Формула взвешенной средней квадратической
В итоге можно сказать, что от правильного выбора вида средней величины в каждом конкретном случае зависит успешное решение задач статистического исследования. Выбор средней предполагает такую последовательность: а) установление обобщающего показателя совокупности; б) определение для данного обобщающего показателя математического соотношения величин; в) замена индивидуальных значений средними величинами; г) расчет средней с помощью соответствующего уравнения.
|
||||
Последнее изменение этой страницы: 2016-04-20; просмотров: 769; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.116.93 (0.009 с.) |