Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Сходство в одном – сходство в другом (аналогия Как вид умозаключения)

Поиск

 

В умозаключениях по аналогии на основе сходства предметов в одних признаках делается вывод об их сходстве и в других признаках. Структура аналогии может быть представлена следующей схемой:

 

Предмет А имеет признаки а, b, с, d.

Предмет В имеет признаки а, b, с.

=> Вероятно, предмет В имеет признак d.

 

В данной схеме А и В – это сравниваемые или уподобляемые друг другу предметы (объекты); а, b, с – сходные признаки; d – это переносимый признак. Рассмотрим пример умозаключения по аналогии:

 

Сочинения философа Секста Эмпирика, выпущенные издательством «Мысль» в серии «Философское наследие», снабжены вступительной статьей, комментариями и предметно-именным указателем.

В аннотации к книжной новинке – сочинениям философа Фрэнсиса Бэкона – говорится, что они выпущены издательством «Мысль» в серии «Философское наследие» и снабжены вступительной статьей и комментариями.

=> Скорее всего, выпущенные сочинения Фрэнсиса Бэкона так же, как и сочинения Секста Эмпирика, снабжены предметно-именным указателем.

 

В данном случае сравниваются (сопоставляются) два объекта: ранее изданные сочинения Секста Эмпирика и выходящие в свет сочинения Фрэнсиса Бэкона. Сходные признаки этих двух книг состоят в том, что они выпускаются одним и тем же издательством, в одной и той же серии, снабжены вступительными статьями и комментариями. На основании этого с большой степенью вероятности можно утверждать, что если сочинения Секста Эмпирика снабжены предметно-именным указателем, то им будут снабжены и сочинения Фрэнсиса Бэкона. Таким образом, наличие предметно-именного указателя является переносимым признаком в рассмотренном примере.

Умозаключения по аналогии делятся на два вида: аналогия свойств и аналогия отношений.

В аналогии свойств сравниваются два предмета, а переносимым признаком является какое-либо свойство этих предметов. Приведенный выше пример представляет собой аналогию свойств.

 

Приведем еще несколько примеров.

1. Жабры для рыб – это то же самое, что легкие для млекопитающих.

 

2. Повесть А. Конан Дойла «Знак четырех» о приключениях благородного сыщика Шерлока Холмса, отличающаяся динамичным сюжетом, мне очень понравилась. Я не читал повесть А. Конан Дойла «Собака Баскервиллей», но знаю, что она посвящена приключениям благородного сыщика Шерлока Холмса и отличается динамичным сюжетом. Скорее всего, эта повесть мне также очень понравится.

 

3. На Всесоюзном съезде физиологов в Ереване (1964 г.) московские ученые М. М. Бонгард и А. Л. Вызов продемонстрировали установку, которая моделировала цветовое зрение человека. При быстром включении ламп она безошибочно распознавала цвет и его интенсивность. Интересно, что эта установка имела ряд тех же самых недостатков, что и зрение человека.

Например, оранжевый свет после интенсивного красного в первое мгновение воспринимался ей как синий или зеленый.

 

В аналогии отношений сравниваются две группы предметов, а переносимым признаком является какое-либо отношение между предметами внутри этих групп. Пример аналогии отношений:

 

В математической дроби числитель и знаменатель находятся в обратном отношении: чем больше знаменатель, тем меньше числитель.

Человека можно сравнить с математической дробью: числитель ее – это то, что он собой представляет на самом деле, а знаменатель – то, что он о себе думает, как себя оценивает.

=> Вероятно, что чем выше человек себя оценивает, тем хуже он становится на самом деле.

 

Как видим, сравниваются две группы объектов. Одна – это числитель и знаменатель в математической дроби, а другая – реальный человек и его самооценка. Причем отношение обратной зависимости между объектами переносится из первой группы во вторую.

 

Приведем еще два примера.

1. Сущность планетарной модели атома Э. Резерфорда состоит в том, что в нем вокруг положительно заряженного ядра по разным орбитам движутся отрицательно заряженные электроны; так же, как и в Солнечной системе, планеты движутся по разным орбитам вокруг единого центра – Солнца.

 

2. Два физических тела (по закону всемирного тяготения Ньютона) притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними; так же и два неподвижных друг относительно друга точечных заряда (по закону Кулона) взаимодействуют с электростатической силой, прямо пропорциональной произведению зарядов и обратно пропорциональной квадрату расстояния между ними.

 

В силу вероятностного характера своих выводов аналогия, конечно же, более близка к индукции, чем к дедукции. Поэтому неудивительно, что основные правила аналогии, соблюдение которых позволяет повысить степень вероятности ее выводов, во многом напоминают уже известные нам правила неполной индукции.

Во-первых, необходимо делать вывод на основе возможно большего количества сходных признаков уподобляемых предметов.

Во-вторых, эти признаки должны быть разнообразными.

В-третьих, сходные признаки должны являться существенными для сравниваемых предметов.

В-четвертых, должна присутствовать необходимая (закономерная) связь между сходными признаками и переносимым признаком.

Первые три правила аналогии фактически повторяют правила неполной индукции. Пожалуй, наиболее важным является четвертое правило, о связи сходных признаков и переносимого признака. Вернемся к примеру аналогии, рассмотренному в начале данного параграфа. Переносимый признак – наличие предметно-именного указателя в книге – тесно связан со сходными признаками – издательство, серия, вступительная статья, комментарии (книги такого жанра обязательно снабжаются предметно-именным указателем). Если переносимый признак (например, объем книги) не связан закономерно со сходными признаками, то вывод умозаключения по аналогии может получиться ложным:

 

Сочинения философа Секста Эмпирика, выпущенные издательством «Мысль» в серии «Философское наследие», снабжены вступительной статьей, комментариями и имеют объем в 590 страниц.

В аннотации к книжной новинке – сочинениям философа Фрэнсиса Бэкона – говорится, что они выпущены издательством «Мысль» в серии «Философское наследие» и снабжены вступительной статьей и комментариями.

=> Скорее всего, выпущенные сочинения Фрэнсиса Бэкона, как и сочинения Секста Эмпирика, имеют объем в 590 страниц.

 

Несмотря на вероятностный характер выводов, умозаключения по аналогии имеют немало достоинств. Аналогия представляет собой хорошее средство иллюстрации и разъяснения какого-либо сложного материала, является способом придания ему художественной образности, часто наводит на научные и технические открытия. Так, на основе аналогии отношений построены многие выводы в бионике – науке, которая занимается изучением объектов и процессов живой природы для создания различных технических приспособлений. Например, построены машины-снегоходы, принцип передвижения которых заимствован у пингвинов. Используя особенность восприятия медузой инфразвука с частотой 8—13 колебаний в секунду (что позволяет ей заранее распознавать приближение бури по штормовым инфразвукам), ученые создали электронный аппарат, способный предсказывать наступление шторма за 15 часов. Изучая полет летучей мыши, которая испускает ультразвуковые колебания и затем улавливает их отражение от предметов, тем самым безошибочно ориентируясь в темноте, человек сконструировал радиолокаторы, обнаруживающие различные объекты и точно определяющие место их расположения независимо от погодных условий.

Как видим, умозаключения по аналогии достаточно широко используются как в повседневном, так и в научном мышлении.

 

 

Основные законы логики

 

 

 

Равна ли мысль самой себе (Закон тождества)

 

Первый и наиболее важный закон логики – это закон тождества, который был сформулирован Аристотелем в трактате «Метафизика» следующим образом: «…иметь не одно значение – значит не иметь ни одного значения; если же у слов нет (определенных) значений, тогда утрачена всякая возможность рассуждать друг с другом, а в действительности – и с самим собой; ибо невозможно ничего мыслить, если не мыслить (каждый раз) что-нибудь одно». Можно было бы добавить к этим словам Аристотеля известное утверждение о том, что мыслить (говорить) обо всем – значит не мыслить (не говорить) ни о чем.

Закон тождества утверждает, что любая мысль (любое рассуждение) обязательно должна быть равна (тождественна) самой себе, т. е. она должна быть ясной, точной, простой, определенной. Говоря иначе, этот закон запрещает путать и подменять понятия в рассуждении (т. е. употреблять одно и то же слово в разных значениях или вкладывать одно и то же значение в разные слова), создавать двусмысленность, уклоняться от темы и т. п.

Например, смысл простого на первый взгляд высказывания Ученики прослушали объяснение учителя непонятен, потому что в нем нарушен закон тождества. Ведь слово прослушали, а значит, и все высказывание можно понимать двояко: то ли ученики внимательно слушали учителя, то ли все пропустили мимо ушей (причем первое значение противоположно второму). Получается, что высказывание было одно, а возможных значений у него два, т. е. нарушается тождество: 1 ≠ 2. Иначе говоря, в приведенном высказывании смешиваются (отождествляются) две различные (нетождественные) ситуации.

Точно так же непонятен смысл фразы Из-за рассеянности на турнирах шахматист неоднократно терял очки. Если не сделать в данном случае никаких комментариев, то непонятно, о чем идет речь: то ли шахматист терял очки как прибор для зрения, то ли – как спортивные баллы; две нетождественные ситуации представляются в этом высказывании как тождественные.

Итак, по причине нарушения закона тождества появляются подобного рода неясные высказывания (суждения).

Когда закон тождества нарушается непроизвольно, по незнанию, по невнимательности или по безответственности, тогда возникают просто логические ошибки; но когда этот закон нарушается преднамеренно, с целью запутать собеседника и доказать ему какую-нибудь ложную мысль, тогда появляются не просто ошибки, а софизмы – внешне правильные доказательства ложной мысли с помощью преднамеренного нарушения логических законов. Приведем пример софизма: 3 и 4 – это два разных числа, 3 и 4 – это 7, следовательно, 7 – это два разных числа. В данном случае, как и в вышеприведенных примерах, происходит отождествление нетождественного: неявно или исподволь смешиваются, уравниваются, представляются как одинаковые разные, неравные, неодинаковые ситуации (простое перечисление чисел и сложение чисел), что и приводит к видимости правильного доказательства ложной мысли.

Обратите внимание, любой софизм, даже очень хитрый, строится по одной и той же схеме – неявно отождествляются нетождественные ситуации, объекты, явления, события, идеи и т. п., что и приводит к внешней правдоподобности ложных рассуждений. Поэтому алгоритм разоблачения какого угодно софизма достаточно прост: надо всего лишь найти в рассуждении два объекта, которые, будучи нетождественными, незаметно отождествляются.

Приведем еще один пример софизма: Что лучше: вечное блаженство или бутерброд? Конечно же, вечное блаженство. А что может быть лучше вечного блаженства? Конечно же, ничто! Но бутерброд ведь лучше, чем ничто, следовательно, он лучше вечного блаженства. В этом примере также нарушается закон тождества.

На нарушениях закона тождества строятся не только неясные суждения и софизмы. На них можно создать разного рода комические эффекты. Например, Н. В. Гоголь в поэме «Мертвые души», описывая помещика Ноз-древа, говорит, что тот был «историческим человеком», потому что, где бы он ни появлялся, с ним обязательно случалась какая-нибудь «история».

На нарушении закона тождества построены многие смешные афоризмы. Например: Не стой где попало, а то еще попадет.

Тот же принцип лежит в основе многих анекдотов. Например:

 

Я сломал руку в двух местах.

Больше не попадай в эти места.

 

Или такой анекдот:

 

У вас в гостинице есть тихие номера?

У нас все номера тихие, только вот постояльцы иногда шумят.

 

Как видим, во всех приведенных примерах используется один и тот же прием: в одинаковых словах смешиваются различные значения, ситуации, темы, одна из которых не равна другой.

 

Приведем в качестве примеров еще несколько анекдотов, построенных на нарушениях закона тождества.

1. – Ты умеешь нырять?

– Умею.

– И долго под водой находишься?

– Пока кто-нибудь не вытащит.

 

2. – Ах, эти детские мечты. Сбылась ли хоть одна из них?

– У меня да. В детстве, когда мама меня причесывала, я мечтал, чтобы у меня не было волос.

 

3. Учитель – ученику:

– Почему ты опоздал сегодня в школу?

– Я хотел пойти утром с отцом на рыбалку, но он меня с собой не взял.

– Надеюсь, отец тебе объяснил, почему ты должен идти в школу, а не на рыбалку?

– Да, он сказал, что червей мало и на двоих не хватит.

 

4. Бабушка говорит внуку о вреде курения, однако он возражает:

– Вот дедушка всю жизнь курит, а ему уже 80 лет!

Бабушка парирует:

– А если бы не курил, то было бы 90!

 

5. На экзамене преподаватель – студенту:

– Ваша фамилия?

– Иванов.

– А чему вы улыбаетесь?

– Я радуюсь!

– Чему именно?

– Тому, что правильно ответил на первый вопрос.

 

6. Когда нашей бабушке было 60 лет, она стала ходить по 5 километров каждый день. Теперь ей 80, и мы понятия не имеем, где она.

 

7. Прапорщик – рядовому:

– Я смотрю, товарищ солдат, вы слишком умный!

– Кто, я?

– Ну не я же!

– Извини, я не знал, что она твоя – на ней написано «общая».

 

9. Встречаются два человека:

– Петя! Сколько лет, сколько зим! Как ты изменился – борода, усы, очки…

– Я не Петя!

– Вот это да! Ты уже и не Петя!

 

10. Мать – дочери:

– Дочка, этот парень хромой, косой… И к тому же полный сирота. Не надо выходить за него замуж!

– А я за красотой не гонюсь, мама!

– Да я не о том, дочка. Парню и так тяжело в жизни пришлось. Пожалей человека!

 

Нарушение закона тождества также лежит в основе многих известных нам с детства задач и головоломок. Например, мы спрашиваем собеседника: «Зачем (за чем) находится вода в стеклянном стакане?» – преднамеренно создавая двусмысленность в этом вопросе (зачем – «для чего» и за чем – за каким предметом, где). Собеседник отвечает на один вопрос, например он говорит: «Чтобы пить, поливать цветы», а мы подразумеваем другой вопрос и, соответственно, другой ответ: «За стеклом».

 

Предложим нашему собеседнику такую задачу: «Как 12 разделить таким образом, чтобы получилось 7 без остатка?».

Он, скорее всего, станет решать ее так: 12: х = 7; х = 12: 7; х =? – и скажет, что она не решается – 12 невозможно разделить так, чтобы получилось семь, да еще и без остатка.

На это мы возразим ему, что задача вполне разрешима: изобразим число 12 римскими цифрами: XII, а потом одной горизонтальной чертой разделим эту запись: – ХII-; как видим, сверху получилось семь (римскими цифрами) и снизу тоже семь, причем без остатка.

Понятно, что эта задача является софистической и основана на нарушении закона тождества, ведь ее математическое решение не тождественно графическому.

 

В основе всех фокусов также лежит нарушение закона тождества. Эффект любого фокуса заключается в том, что фокусник делает что-то одно, а зрители думают совершенно другое, т. е. то, что делает фокусник, не равно (не тождественно) тому, что думают зрители, отчего и кажется, что фокусник совершает что-то необычное и загадочное. При раскрытии фокуса нас, как правило, посещает недоумение и досада: это было так просто, как же мы вовремя этого не заметили.

Известный иллюзионист Игорь Кио демонстрировал такой фокус. Он приглашал из зала человека (не подставного!) и, протягивая ему открытую записную книжку, предлагал написать там что-нибудь. При этом фокусник не видел, что пишет в книжке приглашенный. Потом Кио просил вырвать из книжки страничку с написанным, вернуть ему книжку, а страничку сжечь в пепельнице. После этого фокусник, к всеобщему удивлению, по пеплу читал, что там было написано. Изумленные зрители предполагали, что существует какая-то хитрая методика прочтения по пеплу или еще что-нибудь в этом роде. На самом же деле все было гораздо проще: в записной книжке (через страничку после той, на которой приглашенный делал свою запись) лежала копирка! И пока зрители следили за сжиганием вырванной странички, фокусник быстро и незаметно смотрел в книжке, что там было написано…

 

Вот еще один фокус – интеллектуальный. Задумайте какое-нибудь число (только не очень большое, чтобы не сложно было производить с ним различные математические операции). Теперь умножьте это число на 2 и к полученному результату прибавьте 1. Теперь умножьте то, что получилось, на 5. Далее у получившегося числа отбросьте все цифры, кроме последней, и к этой последней цифре прибавьте 10, потом разделите результат на 3, прибавьте к получившемуся числу 2, далее умножьте результат на 6 и прибавьте 50. У вас получилось 92.

Как правило, собеседник, которому предлагается такой фокус, удивляется тому, каким образом вы узнали результат, ведь число, задуманное им, было вам неизвестно. На самом деле происходит следующее. Человек задумал некое число (для нас это х). Далее вы просите его умножить это число на 2. Результат будет четным. Потом вы просите прибавить 1. Результат обязательно будет нечетным. Далее результат умножается на 5 – а любое нечетное число, умноженное на 5, дает новое число, которое обязательно будет оканчиваться на 5 (только не все об этом помнят).

Потом вы просите собеседника отбросить у получившегося числа все цифры кроме последней и с ней производить далее различные математические действия. Таким образом, все дальнейшие операции делаются с числом 5. Эффект фокуса заключается в том, что ваш собеседник об этом не догадывается и ему по-прежнему кажется, что вам неизвестно, с каким числом производятся все действия.

Итак, собеседник думает (или предполагает) одно, вы же делаете другое, и между первым и вторым нельзя поставить знак равенства, т. е. нарушается закон тождества.

 

Закон тождества проявляет себя даже в нашей повседневной, фактической жизни. Например, человек дает обещание и выполняет его – в данном случае пред нами ситуация тождества (и сказал, и сделал – что обещал, то и выполнил: одно тождественно другому, или 1 = 1). Может быть так, что человек не обещает и не делает то, что он не обещает. Данная ситуация – также проявление тождества (не говорил и не делал, не обещал и не выполнял: одно соответствует, или равно другому, или 0 = 0). Наконец, нередко встречается такая ситуация, когда человек обещает что-то кому-то и при этом не выполняет обещанного. В этом случае мы наблюдаем как раз нарушение тождества (сказано было, а сделано не было, одно не равно другому, или 10). Какая из этих трех ситуаций самая нежелательная? Конечно же, последняя. Когда человек обещает и выполняет, он поступает не только нормально, или адекватно, но еще и хорошо. Когда он не обещает и не выполняет, он также поступает нормально и, если не хорошо, то – хотя бы честно, так как никого не подводит, не заставляет впустую надеяться, на что-то рассчитывать, а потом разочаровываться. Когда же он обещает и не выполняет, то подводит не только другого, но и себя, ведь в данном случае он «заявляет» о своей безответственности, неорганизованности и недобросовестности; с ним в дальнейшем мало кто захочет иметь дело, да и ему будет не за что уважать самого себя. Понятно, что в данном случае речь не идет о невозможности выполнить данное обещание в силу каких-то непредвиденных, внезапных и непреодолимых обстоятельств; имеется в виду то, что человек не выполнил обещанное, потому что забыл, не подумал, не рассчитал, понадеялся на «авось» и т. п. Как видим, нарушение тождества в рассмотренной ситуации приводит к тому, что страдает и сам нарушающий, и те, кто его окружает.

Как видим, закон тождества, его соблюдение и многообразные нарушения проявляют себя не только в логике, но и, по крупному счету, в самой жизни.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 256; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.143.237.54 (0.011 с.)