Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Все писатели – люди, но не Все люди – писатели (отношения между понятиями)Содержание книги
Поиск на нашем сайте
Понятия бывают совместимыми и несовместимыми. Совместимыми называются понятия, объемы которых имеют общие элементы, каким-либо образом соприкасаются. Например, понятия спортсмен и американец совместимые, так как их объемы имеют общие элементы или объекты: есть такие спортсмены, которые являются американцами, и наоборот, есть такие американцы, которые являются спортсменами. Несовместимыми называются понятия, объемы которых не имеют общих элементов, никаким образом не соприкасаются. Например, понятия треугольник и квадрат являются несовместимыми, потому что их объемы не имеют общих элементов: ни один треугольник не может быть квадратом, и наоборот. Совместимые понятия могут находиться в отношениях равнозначности, пересечения и подчинения. Понятия находятся в отношении равнозначности в том случае, если их объемы полностью совпадают. Например, равнозначными будут понятия квадрат и равносторонний прямоугольник, ведь любой квадрат – это равносторонний прямоугольник, а любой равносторонний прямоугольник – это квадрат. В логике отношения между понятиями принято изображать с помощью круговых схем Эйлера[2]. Объемы понятий на них изображаются отдельными кругами. Взаимное расположение кругов на схеме показывает то или иное отношение между понятиями: они могут полностью совпадать, или пересекаться, или не соприкасаться, или один круг может располагаться внутри другого. Так, отношение равнозначности между понятиями квадрат (К) и равносторонний прямоугольник (Р. п.) изображается схемой, на которой два круга, обозначающие два равных объема, полностью совпадают (рис. 1). Понятия находятся в отношении пересечения, когда их объемы совпадают только частично. Например, пересекающимися будут понятия школьник (Ш) и спортсмен (С): есть такие школьники, которые являются спортсменами, и есть такие спортсмены, которые являются школьниками; но в то же время школьник может не быть спортсменом, так же как и спортсмен может не быть школьником. На схеме Эйлера отношение пересечения изображается двумя пересекающимися кругами (рис. 2). Заштрихованная часть показывает частично совпадающие объемы двух понятий. Понятия находятся в отношении подчинения, когда объем одного из них обязательно больше объема другого и полностью его в себя включает (один объем как бы подчиняется другому). Например, в отношении подчинения находятся понятия карась (К) и рыба (Р), так как все караси – это обязательно рыбы, но рыбами являются не только караси, есть и другие виды рыб. Таким образом, объем понятия карась является меньшим по отношению к объему понятия рыба и полностью в него включается (подчиняется ему). В отношении подчинения понятия с меньшим объемом называются видовыми, а с большим – родовыми. На схеме Эйлера отношение подчинения изображается двумя кругами, один из которых располагается внутри другого (рис. 3). Отношениями равнозначности, пересечения и подчинения исчерпываются все случаи совместимости между понятиями. Несовместимые понятия могут находиться в отношениях соподчинения, противоположности и противоречия. Понятия находятся в отношении соподчинения, когда их объемы не имеют общих элементов, но в то же время входят в объем какого-то третьего понятия, родового для них (совместно ему подчиняются). Например, понятия сосна (С) и береза (Б) являются соподчиненными: ни одна сосна не может быть березой, и наоборот, но и множество всех сосен, и множество всех берез включается в более широкий объем понятия дерево (Д). На схеме Эйлера отношение соподчинения изображается несоприкасающимися кругами (рис. 4). Понятия находятся в отношении противоположности, если они обозначают какие-то взаимоисключающие признаки, крайние состояния чего-либо, между которыми, однако, всегда есть некий средний, переходный вариант. Например, противоположными являются понятия высокий человек (В. ч.) и низкий человек (Н. ч.) Третьим (переходным) вариантом между ними будет понятие человек среднего роста. На схеме Эйлера отношение противоположности изображается двумя несоприкасающимися кругами, которые находятся как бы на разных полюсах (рис. 5).
Поскольку объемы противоположных понятий не соприкасаются, это отношение отчасти похоже на соподчинение. Однако понятия, находящиеся в отношении соподчинения, обозначают просто различные объекты разных видов и одного рода, но не противоположные друг другу. Не можем же мы утверждать, что сосна является противоположностью березы, а береза – противоположностью сосны: это просто разные деревья, и не более того. В то же время высокий человек представляет собой противоположность низкого человека, и наоборот. Так же противоположными будут понятия темная комната и светлая комната, горячая вода и холодная вода, белый лист и черный лист, глубокая речка и мелкая речка и т. п.
Понятия находятся в отношении противоречия, если одно из них представляет собой отрицание другого, причем в отличие от противоположных понятий между противоречащими понятиями не может быть третьего (среднего) варианта. Например, в отношении противоречия находятся понятия высокий человек (В. ч.) и невысокий человек (Нв. ч.). В том случае, когда одно понятие является отрицанием другого, третий вариант автоматически исключается: и низкий человек, и человек среднего роста – это невысокий человек. На схеме Эйлера отношение противоречия изображается одним кругом, поделенным на две части, которые обозначают противоречащие понятия (рис. 6). Отношениями соподчинения, противоположности и противоречия исчерпываются все случаи несовместимости между понятиями.
Итак, в логике выделяется шесть вариантов отношений между понятиями. Любые два понятия обязательно находятся в одном из шести указанных случаев отношений. Например, понятия писатель и россиянин находятся в отношении пересечения, писатель и человек – подчинения, Москва и столица России – равнозначности, Москва и Санкт-Петербург – соподчинения, мокрая дорога и сухая дорога – противоположности, Антарктида и материк – подчинения, Антарктида и Африка – соподчинения и т. д. Если два понятия обозначают часть и целое, например месяц и год, то они находятся в отношении соподчинения, хотя может показаться, что между ними отношение подчинения, ведь месяц входит в год. Однако если бы понятия месяц и год были подчиненными, то тогда надо было бы утверждать, что месяц – это обязательно год, а год – это не обязательно месяц (вспомним отношение подчинения на примере понятий карась и рыба: карась – это обязательно рыба, но рыба – это не обязательно карась). Месяц – это не год, а год – это не месяц, но и то, и другое – отрезок времени, следовательно, понятия месяц и год, как и понятия книга и страница книги, автомобиль и колесо автомобиля, молекула и атом, находятся в отношении соподчинения, поскольку часть и целое – не то же самое, что вид и род.
До сих пор круговыми схемами Эйлера мы изображали в основном отношения между двумя понятиями, но это можно сделать для большего числа понятий. Например, отношения между понятиями боксер (Б), негр (Н) и человек (Ч) изображаются следующей схемой Эйлера (рис. 7). Взаимное расположение кругов показывает, что понятия боксер и негр находятся в отношении пересечения: боксер может быть негром и может им не быть, а негр также может быть боксером и может им не быть, а понятия боксер и человек, так же как понятия негр и человек, находятся в отношении подчинения: любой боксер и любой негр – это обязательно человек, но человек может не быть ни боксером, ни негром. Рассмотрим отношения между понятиями дедушка (Д), отец (О), мужчина (М), человек (Ч) с помощью схемы Эйлера (рис. 8). Указанные четыре понятия находятся в отношении последовательного подчинения: дедушка – это обязательно отец, а отец – не обязательно дедушка; любой отец – это обязательно мужчина, однако не всякий мужчина является отцом; наконец, мужчина – это обязательно человек, но человеком может быть не только мужчина.
|
||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 385; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.91.223 (0.008 с.) |