Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Квантово-електронні модулі, підсилювачі та лінійні регенератори.Содержание книги
Поиск на нашем сайте
Для повышения надежности и снижения требований к условиям эксплуатации и монтажа источники и приемники для ВОЛС выполняют в КЭМ, предназначенных для приема и передачи информации по ВОЛС со стандартными скоростями 2,048; 8,448; 34,448; 139,264 Мбит/с Квантово-электронный модуль (КЭМ) позволяет подключать с одной стороны аппаратуру (передачи или приема), а с другой — оптический кабель. На передаче модуль обеспечивает преобразование электрического сигнала в оптический, а на приеме — обратное преобразование. В состав КЭМ на передаче входят: полупроводниковый источник излучения с электронной схемой возбуждения (ИЛ), согласующие устройства, обеспечивающие эффективный ввод излучения в волокно и разъемный соединитель, с помощью которого осуществляются подсоединение световода и ввод в него оптического сигнала. В состав КЭМ на приеме входят согласующее устройство, разъемный соединитель, полупроводниковый фотодетектор, преобразующий оптический сигнал в электрический, и малошумящий усилитель. Для уменьшения зависимости характеристик от температуры и времени наработки используют систему стабилизации выходной мощности, поддерживающую постоянную выходную мощность излучения путем соответствующего изменения тока накачки. В процессе деградации источника излучения при достижении предельного Iн система встроенной диагностики формирует на специальном выходе модуля сигнал потенциального отказа, который используется для выявления КЭМ, отработавшего свой ресурс. Входной формирователь обеспечивает согласование КЭМ со стандартными сигналами. Схема блокировки предотвращает возникновение нежелательных режимов работы ИЛ и блокирует его работу при отсутствии входного сигнала. Линейный регенератор. Через определенные расстояния (10...50 км), обусловленные дисперсией или затуханием кабеля, вдоль оптической линии располагаются линейные регенераторы (ЛР). В ЛР сигнал восстанавливается и усиливается до требуемого значения. ОЭП – оптикоэлектрический преобразователь, ЭОП – электрооптический преобразователь. В регенераторе, содержащем два полукомплекта (отдельно для прямого и обратного направлений передачи), оптический сигнал преобразуется в электрический. В таком виде он регенерируется, усиливается и затем обратно преобразуется в оптический сигнал, который далее передается по ОК (оптический кабель). Оптический кабель подключается к ОЭП приемника через разъемный соединитель. Оптический усилитель не осуществляет оптоэлектронного преобразования. Он, используя специальные активные среды и лазеры накачки, усиливает проходящий оптический сигнал, благодаря индуцированному излучению. Однако, есть две основные причины, которые делают применение усилителя более предпочтительным. 1. Качество сигналов, передаваемых по оптическому волокну, остается очень высоким вследствие малой дисперсии и затухания. Также не велик уровень вносимых шумов из-за подверженности волокна влиянию электромагнитного излучения. Поэтому ретрансляция передаваемых данных простым усилением без полной регенерации становится весьма эффективной. 2. Оптический усилитель является более универсальным устройством, поскольку в отличии от регенератора он не привязан к стандарту передающегося сигнала или определенной частоте модуляции. На практике на один регенератор может приходиться несколько последовательно расположенных оптических усилителей (до 4-8).
22. Найпростіші двохшарові світловоди. Волоконный световод, состоящий из однородной сердцевины и однородной оболочки, называется двухслойным, или ВС со ступенчатым профилем показателя преломления (ППП). Важным параметром ВС является числовая апертура, От её значения зависят эффективность ввода излучения лазера или светодиода в ВС, потери на микроизгибах, дисперсия импульсов, число распространяющихся мод. Для однородного двухслойного ВС число мод N = V2/2. Здесь - нормированная рабочая частота; l - длина волны; a - радиус сердцевины. Такие световоды состояли из световодной жилы, заключенной в прозрачную оболочку, показатель преломления которой был меньше, чем показатель преломления жилы. Если толщина прозрачной оболочки превосходит несколько длин волн передаваемого светового сигнала, то ни пыль, ни свойства среды вне этой оболочки не оказывают существенного влияния на процесс распространения световой волны в двухслойном световоде. Подобные световоды можно покрывать полимерной оболочкой и превращать их в световедущий кабель, пригодный для практического применения. Но для этого необходимо создать совершенную границу между жилой и прозрачной оболочкой. Наиболее простая технология изготовления световода состоит в том, что стеклянный стержень-сердцевина вставляется в плотно подогнанную стеклянную трубку с меньшим показателем преломления. Затем эта конструкция нагревается. В волоконно-оптических световодах используется двухслойное волокно. Оно состоит из «сердцевины» (внутренней жилы) с показателем преломления n1 и оболочки с показателем преломления n2. Поскольку внутренняя жила оптически более плотная, чем оболочка (n1 >n2), то для лучей, входящих в световод под малыми углами по отношению к оси световода, выполняется условие полного внутреннего отражения: при падении световой волны на границу с оболочкой вся ее энергия отражается внутр. «сердцевины». То же самое происходит и при всех последующих отражениях. Таким образом, свет распространяется вдоль оси световода, не выходя через оболочку. Обычно внутренняя (световедущая) жила изготавливается из чистого кварца, а светоотражающая оболочка, имеющая меньший показатель преломления, из кварца, легированного бором. Диаметр внутренней жилы световода обычно не превышает десятков мкм, диаметр оболочки — 100 мкм. Как показывают экспериментальные исследования, такие световоды отличаются высокой прочностью и в то же время устойчивы к изгибам и скручиванию. Двухслойные световоды могут объединяться в кабели, содержащие до нескольких сот двухслойных волокон (рис. 10.6). Типовые технические данные оптических кабелей следующие: наружный диаметр 2...20 мм; прочность на разрыв—от десятков до сотен ньютонов, масса—2...200 г/м (минимальные значения порядка 0,3 г/м), допустимый радиус изгиба 5...50 см. Волоконный световод, состоящий из однородной сердцевины и однородной оболочки, называется двухслойным, или ВС со ступенчатым профилем показателя преломления (ППП). Поперечное сечение и ППП такого световода показаны на рис. 1.
Важным параметром ВС является числовая апертура, которая определяется выражением От её значения зависят эффективность ввода излучения лазера или светодиода в ВС, потери на микроизгибах, дисперсия импульсов, число распространяющихся мод. Для однородного двухслойного ВС число мод N = V2/2.
Здесь - нормированная рабочая частота;
l - рабочая длина волны; a - радиус сердцевины. Каждая мода обладает характерными для неё структурой ЭМП, фазовой и групповой скоростями. Числовая апертура зависит от материала и способа изготовления световодов. ВС со ступенчатым ППП с большой апертурой (0,2-0,6) изготовляют из многокомпонентных стёкол.
24.Однополярізаційнї світловоди. Світловоди інтегральної оптики. Постоянное совершенствование ВОЛС в направлении увеличения скорости передачи информации и длины участка регенерации поставило задачу создания так называемых когерентных ВОЛС с гетеродинным методом приёма оптических сигналов. Для этих ВОЛС необходимы одномодовые световоды, сохраняющие поляризацию передаваемого излучения на большой длине – однополяризационные световоды. В обычном круглом световоде определённое состояние поляризации сохраняется на расстоянии не более чем несколько метров. Разработаны однополяризационные световоды с линейной и круглой поляризациями. Световоды с линейной поляризацией представляют собой аксиально-несимметричные структуры, в которых может распространяться или мода только одной поляризации, или две моды различной поляризации, но с большой разностью между значениями постоянных распространения этих мод. Первые называют абсолютно поляризационными световодами, вторые световодами с линейным двулучепреломлением. Примером абсолютно однополяризационных световодов являются световоды с аксиально-несимметричным распределением показателя преломления в сердечнике. Ортогонально поляризованные моды НЕx11 и HEy11 имеют различные частоты отсечки Vcx и Vcy соответственно. Частотный диапазон одномодового режима характеризуют параметром S Значения параметра S малы, поэтому такие световоды находят ограниченное применение. В однополяризованных световодах с линейным двулучепреломлением разность постоянных распространения двух поляризаций моды НЕ11 можно увеличить либо изменением формы поперечного сечения сердечника (оболочки), либо созданием анизотропного индуцированного механического напряжения в поперечном сечении. Тогда первое двулучепреломление называют геометрическим, а второе — индуцированным. Поляризационные свойства световодов с двулучепреломлением характеризуются коэффициентом модового двулучепреломления и длиной биений где bx и by – постоянные распространения двух мод различных поляризаций; lВ – длина волны в световоде. Для сохранения поляризации необходимо, чтобы L<Lс, где Lс — пространственный период случайных возмущений вдоль световода, обычно составляющий несколько сантиметров. Одномодовые световоды с круговой поляризацией получают при скручивании аксиально-симметричных световодов, при этом возникает различие постоянных распространения мод НЕ11 с круговой поляризацией по часовой Световоды для устройств интегральной оптики. представляют собой слой постоянной толщины с диэлектрической проницаемостью Е0 нанесенный на подложку из диэлектрика с Е1, причем Е0>Е1 и Е2. Если угол между нормалью к поверхности пленки и направлением распространения луча света θ больше критического угла падения для верхней и нижней границ раздела, то световая волна в пленке, испытывая полное внутреннее отражение, будет распространяться по зигзагообразному пути и может быть названа зигзагообразной волной. Постоянная распространения волноводной моды , где n*- эффективный показатель преломления волноводной моды. Значения угла θ соответствуют набору углов, удовлетворяющих самосогласованному распространению поля в волноводе, при котором поддерживается распространение волноводной моды. Области существования волноводных мод для идеального плоского волновода характеризуются диаграммой ω-β. На частоте отсечки постоянные распространения мод принимают значения, лежащие на верхней границе n1k. При увеличении частоты ω (или толщины волновода) величина β возрастает и достигает нижней границы n0k. Дискретный спектр волновода дополняется непрерывным спектром излучательных мод. Число волноводных мод определяется как:
|
||||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 494; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.110.231 (0.008 с.) |