ТОП 10:

Для формального описания таблицы используется теоретико-множественное понятие отношения.



Схемой отношения R называется перечень имен атрибутов отношения (соответствующих столбцам таблицы) с указанием доменов этих атрибутов и обозначается R (A1, A2, …, An); {Ai}Í Di , где {Ai} – множество значений, принимаемых атрибутом Ai ( ).

Совокупность схем отношений, используемых для представления концептуальной модели, называется схемой реляционной базы данных, а текущие значения соответствующих отношений – реляционной базой данных.

.

В качестве основного недостатка реляционной модели можно указать дублирование информации при представлении связей.

Необходимо отметить, что большинство СУБД для персональных ЭВМ поддерживают именно реляционную модель данных. В качестве примеров таких наиболее распространенных СУБД можно указать все dBase-подобные системы, DB2, Paradox, Access, FoxPro, Oracle, MS SQL Server.

 

Более подробно реляционная модель данных будет рассмотрена в следующей лекции.

6.2.4. Многомерная модель данных

Вернемся к понятию «сущность» концептуальной модели.

Сущность – это то, о чем накапливается информация в информационной системе. Часто оказывается, что информация об определенной сущности зависит еще от ряда параметров. Рассмотрим, например, сущность УСПЕВАЕМОСТЬ СТУДЕНТОВ со следующими атрибутами: число двоек, число троек, число четверок, число пятерок.

Значение атрибутов зависит от параметров «курс», «учебный год». Если использовать для описания соответствующей концептуальной схемы реляционную модель, то необходимо вводить множество таблиц УСПЕВАЕМОСТЬ СТУДЕНТОВ по каждому году для каждого курса. Так, при 5 курсах и необходимости анализировать данные за 10 лет число таблиц будет равно пятидесяти. Дублируются аналогичные структуры всех таблиц, достаточно сложна обработка данных, связанная с анализом однотипных данных при изменении значения одного из параметров и т.д.

Наиболее подходящей моделью данных для этого случая является так называемая многомерная модель, используемая в технологии OLAP (OnLine Analytical Processing – оперативная аналитическая обработка). Отметим, что многомерность модели данных означает здесь многомерное логическое представление структуры информации и, вообще говоря, не связана с многомерностью визуализации.

Многомерные структуры представляются как гиперкубы данных. Каждая грань куба является размерностью. Основными понятиями, используемыми в многомерных моделях данных, являются «измерение» (dimension) и «ячейка» (cell).

Измерение – упорядоченный набор значений, принимаемых конкретным параметром, соответствующий одной из граней гиперкуба. Для нашего примера можно указать в качестве измерений: учебный год – 2006-2007, 2007-2008, 2008-2009; курсы – 1,2,3 и т.д.

Ячейка или показатель – это поле, соответствующее атрибуту сущности, значение которого однозначно определяется фиксированным набором значений параметров (значениями «измерений», например, 2008-2009 учебный год, первый курс).

В многомерной модели данных определяется ряд дополнительных операций, среди которых можно выделить операции «формирование среза» и «агрегация».

При формировании среза пользователю по его запросу предоставляется некоторое подмножество гиперкуба, полученное в результате фиксаций пользователем одного или нескольких значений параметров. Операция «агрегация» обеспечивает переход к более общему представлению информации из гиперкуба пользователю, например суммируя значения показателей по всем значениям одного из параметров, допустим, по всем курсам.

Такая модель позволяет легко сравнивать данные при разных значениях параметров, строить графики зависимости значений конкретных атрибутов от значений определенных параметров (например, изменение атрибута по годам) и т.п. Поэтому основное назначение технологии OLAP – обработка информации для проведения анализа и принятия решения.

Массовое использование СУБД, поддерживающих многомерную модель данных, только начинается. В качестве наиболее известных СУБД такого типа можно указать Oracle Express Server.

Oracle Express Server и Cache.

 

6.3. Средства автоматизированного проектирования концептуальной модели

Средства автоматизированного проектированияконцептуальной модели привлекают к себе в настоящее время большой интерес и используются в процессе создания структуры базы данных и интерфейса пользователя для доступа к данным.

Причина применения этих средств состоит в использовании в подавляющем большинстве реальных разработок баз данных спиральной модели жизненного цикла программного обеспечения, что предусматривает последовательное создание нескольких версий программного обеспечения. Каждая следующая версия включает в себя предыдущую (возможно, не полностью) и является ответом на замечания пользователя, полученные в результате тестирования предыдущей версии. Напомним, что альтернативным способом является каскадная схема разработки программного обеспечения. Каскадный подход хорошо подходит для тех задач, для которых в самом начале разработки можно достаточно полно и точно сформулировать все требования заказчика. В случае построения баз данных каскадный подход является неприемлемым.

При создании баз данных первая модель программного обеспечения, к сожалению, очень редко является удачной. Чаще всего заказчик отвергает первую версию, так как она недостаточно полно отвечает его требованиям. Причина такой ситуации заключается в том, что заказчик не может сразу, до создания начальной версии программы, четко и полно сформулировать свои требования. Обычно после получения первого варианта программного обеспечения заказчик выдвигает дополнительные требования, которые нельзя реализовать в рамках созданной базы данных. Это вынуждает разработчиков вносить изменения в структуру базы данных, а также, соответственно, в интерфейс пользователя для доступа к базе данных. Таких итераций может быть несколько до момента получения решения, адекватного запросам заказчика. Но даже после получения удовлетворительного решения процесс разработки базы данных не завершается. Жизнь не стоит на месте, и запросы заказчика меняются с течением времени. Часть этих изменений можно реализовать без изменения структуры базы данных, изменяя только интерфейс пользователя, другие же требуют изменения и интерфейса, и структуры базы данных. Надо заметить, что подобные изменения являются очень болезненными – работа по их внесению может оказаться трудоемкой и, что самое неприятное, потребовать замены большого количества отлаженного программного кода. Иными словами, замененный код был написан впустую, на самом деле его не нужно было писать.

Таким образом, создание работоспособной базы данных можно условно разделить на три этапа – проектирование базы данных, в процессе которого создаются рабочие прототипы, кодирование – создание структур баз данных и законченного интерфейса пользователя и сопровождение готовой базы данных.

Основная идея применения средств автоматизированного проектирования баз данных заключается в том, что процесс ручного кодирования начинается только после окончания процесса проектирования. На стадии проектирования схема базы данных и интерфейс пользователя для доступа к базе данных создаются автоматически, исходя из описания концептуальной модели, с помощью так называемых CASE-средств (Computer Aided Software/System Engineering). Конечно, созданный таким образом интерфейс не является законченным программным продуктом, однако он позволяет заказчику оценить возможности конечного продукта и внести свои коррективы. Только после одобрения заказчиком рабочего прототипа разработчики приступают к ручному кодированию – созданию законченного приложения.

При сопровождении все повторяется, за тем исключением, что генерируется не все приложение целиком, а только часть, которую надо изменять.

На практике чаще всего CASE-средства используются для создания схемы базы данных в виде ER-диаграмм и генерации структур баз данных для конкретной СУБД. После получения от заказчика изменений разработчики вносят соответствующие исправления в диаграмму «сущность – связь» и заново генерируют структуры баз данных. Средства автоматической генерации интерфейсов используются реже.

В настоящее время практически каждый производитель СУБД предлагает собственный программный продукт автоматизированного проектирования. Это Oracle Designer (Oracle), Power Desinger (Sybase) и другие. Демонстрационные версии данных программных продуктов можно загрузить с соответствующих сайтов (www.oracle.com, www.sybase.com).

Кроме того, на рынке представлены решения третьих фирм, не производящих СУБД. Одними из самых распространенных являются программные продукты фирмы AllFusion – AllFusion ERwin Data Modeler и AllFusion Process Modeler (ранее – BPwin) и другие. На российском рынке данные программы предлагает фирма Interface Ltd. (www.interface.ru). Программа AllFusion Process Modeler предназначена для моделирования бизнес-процессов. Результатами ее работы могут быть не только диаграммы, но и сгенерированный для различных сред код для доступа к базам данных. Для этого, однако, необходимо еще сСоздатьние диаграммы «сущность – связь» осуществляется с помощью AllFusion ERwin Data Modeler, дальнейшее моделирование, включая генерациюпрограммного кода создания базы данных производится с помощью программы AllFusion Process Modeler.

Поскольку данный учебный курс не предполагает знакомства со средствами описания бизнес-процессов, мы рассмотрим только ERwin Data Modeler – программный продукт, непосредственно использующийся при создании баз данных.

По данным Interface Ltd. AllFusion ERwin Data Modeler (ранее – ERwin) позволяет проектировать, документировать и сопровождать базы данных, хранилища данных и витрины данных (data marts).

Создав наглядную модель базы данных можно оптимизировать структуру БД и добиться её полного соответствия требованиям и задачам организации. Визуальное моделирование повышает качество создаваемой базы данных, продуктивность и скорость её разработки.

На сайте Interface Ltd. доступна для загрузки демонстрационная версия AllFusion ERwin Data Modeler, которая представляет собой полнофункциональную версию, ограниченную по времени.

Основные характеристики AllFusion ERwin Data Modeler:







Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.201.9.19 (0.008 с.)