Ядерні сили. Властивості ядерних сил 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Ядерні сили. Властивості ядерних сил



Величезна питома енергія зв’язку ядра свідчить, що між нуклонами в ядрі діють особливі сили, які значно переважають електромагнітну та гравітаційну взаємодію нуклонів. Ядерна взаємодія між нуклонами одержала назву сильної взаємодії. Ядерні сили характеризуються такими особливостями:

- короткодіючі: в ядрі, (на відстанях r ~10–15м) зумовлюють ефективне притягання між нуклонами; поза ядром (при r > 10–14м) практично зникають; при r < 10–15м стають силами відштовхування і це суттєво, щоб ядро не колапсувало;

- зарядовонезалежні, тобто мають неелектричну природу;

- залежать від взаємної орієнтації спінів нуклонів;

- мають спін-орбітальний характер (залежать від взаємної орієнтації спіна і орбітального момента нуклона);

- є нецентральними (не напрямлені вздовж прямої, що з’єднує центри нуклонів);

- мають властивість насичення, тобто діють лише між найближчими сусідами.

У 1934 р. І.Є. Тамм висунув гіпотезу, що сильна взаємодія повинна мати обмінну природу. По аналогії з електромагнітною взаємодією, яка квантовою електродинамікою описується як процес віртуального обміну електронів фотонами

, (8.8)

нуклони в ядрі повинні обмінюватись деякими віртуальними частинками з масою, відмінною від нуля. Дійсно, віртуальними називаються частинки, час життя яких менший того, що визначається співвідношенням невизначеностей

, (8.9)

де – невизначеність енергії квантового стану, – тривалість існування цього стану. Очевидно, радіус дії обмінних сил оцінюється величиною

,

тобто він може бути скінченим, якщо маса віртуальної частинки відмінна від нуля.

У 1935 р. Х. Юкава показав, що для пояснення величини ядерних сил слід припустити існування віртуальних частинок з масою у 200–300 разів більшою від маси електрона. Віртуальна частинка може стати реальною, якщо їй надати достатньої енергії. Подібні частинки з масою у 1936 р. виявили К. Андерсон і С. Неддермайер в космічних променях; вони дістали назву м’юонів (μ -мезонів). Проте, лабораторними дослідженнями було доведено, що м’юони практично не взаємодіють з ядрами, тому не можуть бути носіями ядерних сил. У 1947 р. С. Поуелл і Дж. Оккіаліні виявили в космічних променях ще один тип мезонів, які назвали -мезонами (піонами). Вони і виявились носіями ядерних сил. Існують три типи піонів: . Заряд –мезонів за абсолютною величиною рівний елементарному зарядові е, їх маси: , . Спін усіх – мезонів S = 0, всі вони нестабільні; час життя , . В основному піони розпадаються за схемами:

де – м’юони, - м’юонні нейтрино і антинейтрино, γ – фотони.

За рахунок процесів:

, (8.10)

, (8.11)

, (8.12)

здійснюється обмін нуклонів віртуальними піонами, що приводить до сильної взаємодії нуклонів. Така модель підтверджується дослідами по розсіянню нейтронів на протонах. При проходженні пучка нейтронів через водень у пучку з’являються протони, які мають енергію і напрямок руху нейтронів; відповідне число нерухомих нейтронів виявляється в мішені. Природно припустити, що нейтрон, пролітаючи поблизу протона, захоплює віртуальний p+ -мезон. В результаті нейтрон перетворюється в протон, а протон, який втратив свій заряд, перетворюється в нейтрон (рис. 8.2).

На основі процесів (8.10), (8.11) можна також пояснити магнітні моменти протона і нейтрона. Від’ємний магнітний момент нейтрона зумовлений орбітальним рухом p–мезона у віртуальному стані нейтрона (8.11);. аномальний магнітний момент протона (більший від одного магнетона) зумовлений орбітальним рухом p +–мезона у віртуальному стані протона (8.10).

Незважаючи на пояснення природи ядерних сил, послідовна кількісна теорія ядра донині не побудована, бо являє собою громіздку квантову задачу багатьох тіл, в якій закон дії ядерних сил невідомий. Це спонукає йти по шляху створення моделей ядра, які, за рахунок введення певних параметрів, що підбираються в узгодженні з дослідом, дозволяють простими засобами описувати деяку сукупність властивостей ядра. Найбільш вживаними з них є краплинна та оболонкова моделі ядра.

Краплинна модель ядра (К.Вейцзеккер, Я.І.Френкель, Н.Бор, 1935–1939р.), базуючись на властивості насичення ядерних сил і молекулярних сил в рідині, уподібнює ядро до зарядженої краплини рідини. Це дозволило одержати напівемпіричну формулу для енергії зв’язку ядра і, зокрема, пояснити процеси поділу важких ядер.

Оболонкова модель ядра (М. Гепперт-Майєр, Х. Ієнсен, 1949–1950р.) базується на уявленні, що нуклони рухаються незалежно в усередненому центрально-симетричному полі. У зв’язку з цим виникають дискретні енергетичні рівні, які заповнюються нуклонами на основі принципу Паулі. Ці рівні групуються в оболонки, в кожній з яких може перебувати певне число нуклонів. Повністю заповнена оболонка є особливо стійким утворенням. Такими особливо стійкими (магічними) виявляються ядра, у яких число протонів Z або число нейтронів N рівні: 2, 8, 20, 28, 50, 82, 126. Ядра, у яких магічними є Z та N, називаються двічі магічними. Їх відомо п’ять: , вони особливо стійкі.

Відома також узагальнена модель ядра (О. Бор, Б. Моттельсон, 1952 – 1953 рр.), що є спробою синтезу двох попередніх. Проте, кожна з цих моделей не характеризує загальної поведінки ядер.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 337; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.48.135 (0.004 с.)