Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Теоретический предел трудоемкости задачи.Содержание книги
Поиск на нашем сайте
Рассматривая некоторую алгоритмически разрешимую задачу, и анализируя один из алгоритмов ее решения, мы можем получить оценку трудоемкости этого алгоритма в худшем случае – fa( Другая, более точная формулировка, имеет следующий вид: какова оценка сложности самого «быстрого» алгоритма решения данной задачи в худшем случае? Очевидно, что это оценка самой задачи, а не какого либо алгоритма ее решения. Таким образом, мы приходим к определению понятия функционального теоретического нижнего предела трудоемкости задачи в худшем случае:
Если мы можем на основе теоретических рассуждений доказать существование и получить оценивающую функцию, то мы можем утверждать, что любой алгоритм, решающий данную задачу работает не быстрее, чем с оценкой
Приведем ряд примеров: 1. Задача поиска максимума в массиве A=(a1,…,an) – для этой задачи, очевидно должны быть просмотрены все элементы, и 2. Задача умножения матриц - для этой задачи можно сделать предположение, что необходимо выполнить некоторые арифметические операции со всеми исходными данными, теоретическое обоснование какой–либо другой оценки на сегодня не известно, что приводит нас к оценке Сложностные классы задач.
В начале 1960-х годов, в связи с началом широкого использования вычислительной техники для решения практических задач, возник вопрос о границах практической применимости данного алгоритма решения задачи в смысле ограничений на ее размерность. Какие задачи могут быть решены на ЭВМ за реальное время? Ответ на этот вопрос был дан в работах Кобмена (Alan Cobham, 1964), и Эдмнодса (Jack Edmonds, 1965), где были введены сложностные классы задач. 1) Класс P (задачи с полиномиальной сложностью) Задача называется полиномиальной, т.е. относится к классу P, если существует константа k и алгоритм, решающий задачу с Задачи класса P – это интуитивно, задачи, решаемые за реальное время. Отметим следующие преимущества алгоритмов из этого класса: o для большинства задач из класса P константа k меньше 6; o класс P инвариантен по модели вычислений (для широкого класса моделей); o класс P обладает свойством естественной замкнутости (сумма или произведение полиномов есть полином). Таким образом, задачи класса P есть уточнение определения «практически разрешимой» задачи. 2) Класс NP (полиномиально проверяемые задачи) Представим себе, что некоторый алгоритм получает решение некоторой задачи – соответствует ли полученный ответ поставленной задаче, и насколько быстро мы можем проверить его правильность? Рассмотрим, например задачу о сумме: Дано N чисел – А = (a1,…an) и число V. Задача: Найти вектор (массив) X=(x1,…,xn), xiє{0,1}, такой, что Содержательно: может ли быть представлено число V в виде суммы каких-либо элементов массива А. Если какой-то алгоритм выдает результат – массив X, то проверка правильности этого результата может быть выполнена с полиномиальной сложно-стью: проверка Формально: Содержательно задача относится к классу NP, если ее решение некоторым алгоритмом может быть быстро (полиномиально) проверено.
|
||||
|
Последнее изменение этой страницы: 2016-04-19; просмотров: 506; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.96 (0.006 с.) |