Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Принцип работы сотовой связиСодержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
Основные принципы сотовой телефонии довольно просты. Первоначально Федеральная комиссия по связи установила географические зоны покрытия сотовых радиосистем на основе измененных данных переписи 1980 г. Идея сотовой связи состоит в том, что каждая зона подразделяется на ячейки шестиугольной формы, которые, совмещаясь, образуют структуру, напоминающую пчелиные соты, как показано на рисунке 6.1, а. Шестиугольная форма была выбрана потому, что она обеспечивает наиболее эффективную передачу, приблизительно соответствуя круговой диаграмме направленности и при этом устраняя щели, которые всегда возникают между соседними окружностями. Сота определяется своими физическими размерами, численностью населения и структурой трафика. Федеральная комиссия по связи не регламентирует количеств сот в системе и их размер, предоставляя операторам возможность установить эти параметры в соответствии с ожидаемой структурой трафика. Каждой географической области выделяется фиксированное количество сотовых речевых каналов. Физические размеры соты зависят от абонентской плотности и структуры вызовов. Например, крупные соты (макросоты) обычно имеют радиус от 1,6 до 24 км при мощности передатчика базовой станции от 1 Вт до 6 Вт. Самые маленькие соты (микросоты) обычно имеют радиус 460 м или меньше при мощности передатчика базовой станции от 0,1 Вт до 1 Вт. На рисунке 6.1, б показана сотовая конфигурация с сотами двух размеров.
Рисунок 6.1. – Сотовая структура ячеек а);сотовая структура с сотами двух размеров б) классификация сот в)
Микросоты чаще всего используются в регионах с высокой плотностью населения. В силу своего небольшого радиуса действия микросоты менее подвержены воздействиям, ухудшающим качество передачи, например, отражениям и задержкам сигнала. Макросота может накладываться на группу микросот, при этом микросоты обслуживают медленно перемещающиеся мобильные аппараты, а макросота – быстро перемещающиеся аппараты. Мобильный аппарат способен определять скорость своего перемещения как быструю или медленную. Это позволяет уменьшить число переходов из одной соты в другую и коррекции данных о месте нахождения. Алгоритм перехода из одной соты в другую может быть изменен при малых расстояниях между мобильным аппаратом и базовой станцией микросоты. Иногда радиосигналы в соте слишком слабы, чтобы обеспечить надежную связь внутри помещений. Особенно это касается хорошо экранированных участков и зон с высоким уровнем помех. В таких случаях используются очень маленькие соты – пикосоты. Пикосоты внутри помещений могут использовать те же частоты, что и обычные соты данного региона, особенно при благоприятной окружающей среде, как, например, в подземных тоннелях. При планировании систем, использующих соты шестиугольной формы, передатчики базовой станции могут размещаться в центре соты, на ребре соты или в вершине соты (рисунок 6.2 а, б, в соответственно). В сотах с передатчиком в центре используются обычно всенаправленные антенны, а в сотах с передатчиками на ребре или в вершине – секторные направленные антенны. Всенаправленные антенны излучают и принимают сигналы одинаково во всех направлениях.
Рисунок 6.2 – Размещение передатчиков в сотах: в центре а); на ребре б); в вершине в) В системе сотовой связи одна мощная стационарная базовая станция, расположенная высоко над центром города, может заменяться многочисленными одинаковыми маломощными станциями, которые устанавливаются в зоне покрытия на площадках, расположенных ближе к земле.. Соты, использующие одну и ту же группу радиоканалов, могут избежать взаимных влияний, если они правильно разнесены. При этом наблюдается повторное использование частот. Повторное использование частот – это выделение одной и той же группы частот (каналов) нескольким сотам при условии, что эти соты разделены значительными расстояниями. Повторному использованию частот способствует уменьшение зоны обслуживания каждой соты. Базовой станции каждой соты выделяется группа рабочих частот, отличающихся от частот соседних сот, а антенны базовой станции выбираются таким образом, чтобы охватить желаемую зону обслуживания в пределах своей соты. Поскольку зона обслуживания ограничена границами одной соты, различные соты могут использовать одну и ту же группу рабочих частот без взаимных влияний при условии, что две таких соты находятся на достаточном расстоянии друг от друга. Географическая зона обслуживания сотовой системы, содержащая несколько групп сот делится на кластеры (рисунок 6.3). Каждый кластер состоит из семи сот, которым выделяется одинаковое количество полнодуплексных каналов связи. Соты с одинаковыми буквенными обозначениями используют одну и ту же группу рабочих частот. Как видно из рисунка, одинаковые группы частот используются во всех трех кластерах, что позволяет в три раза увеличить количество доступных каналов мобильной связи. Буквы A, B, C, D, E, F и G обозначают семь групп частот.
Рисунок 6.3 – Принцип повторного использования частот в сотовой связи Рассмотрим систему с фиксированным количеством полнодуплексных каналов, доступных в некоторой области. Каждая зона обслуживания разделяется на кластеры и получает группу каналов, которые распределяются между N сотами кластера, группируясь в неповторяющиеся комбинации. Все соты имеют одинаковое количество каналов, но при этом они могут обслуживать зоны разового размера. Таким образом, общее число каналов сотовой связи, доступных в кластере, можно представить выражением: F = GN (6.1) где F – число полнодуплексных каналов сотовой связи, доступных в кластере; G – число каналов в соте; N – число сот в кластере. Если кластер «копируется» в пределах заданной зоны обслуживания m раз, то суммарное число полно дуплексных каналов составит: C = mGN = mF (6.2) где С – суммарное число каналов в заданной зоне; m – число кластеров в заданной зоне. Из выражений (6.1) и (6.2) видно, что суммарное число каналов в сотовой телефонной системе прямо пропорционально количеству «повторений» кластера в заданной зоне обслуживания. Если размер кластера уменьшается, а размер соты остается неизменным, то для покрытия заданной зоны обслуживания потребуется больше кластеров, и суммарное число каналов в системе возрастет. Число абонентов, которые могут одновременно использовать одну и ту же группу частот (каналов), находясь не в соседних ячейках небольшой зоны обслуживания (например, в пределах города), зависит от общего числа ячеек в данной зоне. Обычно число таких абонентов равно четырем, однако в густонаселенных регионах оно может быть значительно больше. Это число называют коэффициентом повторного использования частот или FRF – Frequency reuse factor. Математически его можно выразить отношением:
где N – общее число полно дуплексных каналов в зоне обслуживания; С – общее число полнодуплексных каналов в соте. В условиях прогнозируемого увеличения трафика сотовой связи возросший спрос на обслуживание удовлетворяют путем уменьшения размера соты, разделяя ее на несколько сот, каждая из которых имеет свою базовую станцию. Эффективное разделение сот позволяет системе обрабатывать больше вызовов при условии, что соты не будут слишком маленькими. Если диаметр соты становится меньше 460 м, то базовые станции соседних ячеек будут влиять друг на друга. Соотношение между повторным использованием частот и размером кластера определяет, как можно изменить масштаб сотовой системы в случае увеличения абонентской плотности. Чем меньше сот в кластере, тем больше вероятность взаимных влияний между каналами. Поскольку соты имеют шестиугольную форму, каждая из них всегда имеет шесть равноудаленных соседних сот, и углы между линиями, соединяющими центр любой соты с центрами соседних сот, кратны 60°. Поэтому число возможных размеров кластера и схем размещения сот ограничено. Для соединения сот между собой без пробелов (мозаичным способом) геометрические размеры шестиугольника должны быть такими, чтобы число сот в кластере удовлетворяло условию:
где N – число сот в кластере; i и j – неотрицательные целые числа. Отыскание маршрута к ближайшим сотам с совмещенным каналом (так называемым сотам первого яруса) происходит следующим образом: - перемещение на i сот (через центры соседних сот): - поворот на 60° в направлении против часовой стрелки; - перемещение на j сот вперед (через центры соседних сот). Например, число сот в кластере и местоположение сот первого яруса для следующих значений: j = 2. i = 3 будет определяться из выражения 6.4 (рисунок 6.4) N = 32 + 3 2 + 22 = 19. На рисунке 6.5 показаны шесть ближайших сот, использующих те же каналы, что и сота А.
Процесс передачи обслуживания из одной соты в другую, т.е. когда мобильный аппарат удаляется от базовой станции 1 к базовой станции 2 (рисунок 6.6) включает четыре основных этапа: 1) инициирование – мобильный аппарат или сеть выявляет необходимость в передаче обслуживания и инициирует необходимые сетевые процедуры; 2) резервирование ресурсов – с помощью соответствующих сетевых процеурр резервируются ресурсы сети, необходимые дляпередачи обслуживания (речевой канал и канал управления); 3) исполнение – непосредственная передача управления от одной базовой станции к другой; 4) окончание – излишние сетевые ресурсы освобождаются, становясь доступными другим мобильным аппаратам.
Рисунок 6.6 – Передача обслуживания
|
|||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 513; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.254.83 (0.007 с.) |