Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Фотоэлектрический метод измерения температур.Содержание книги
Поиск на нашем сайте
К классу приборов, измеряющих яркостную температуру, относятся также фотоэлектрические пирометры. Они позволяют без участия человека, в автоматическом режиме измерять и записывать яркостную температуру неподвижных или движущихся тел, нагретых до видимого свечения, например в научных исследованиях, при высокочастотном нагреве, при прокатке, при нагреве в печах и т. п. Фотоэлектрические методы позволили превзойти точность, достигнутую в визуальной оптической пирометрии, которая ограничена контрастной чувствительностью человеческого глаза. В этих пирометрах в качестве приемника излучения (чувствительного элемента) используют фотоэлемент, фотосопротивление и т.п. При освещении фотоэлемента в цепи его возникает ток, пропорциональный световому потоку, испускаемому нагретым телом. Следует отметить, что применяемые фотоэлементы (сурьмяно-цезиевые, кислородно-цезиевые, с запирающим слоем и др.) обладают различной спектральной чувствительностью, которая зависит от типа фотоэлемента. В зависимости от используемого рабочего спектрального интервала они могут быть разделены на две группы. В первой группе используется красный светофильтр с областью пропускания от 0,6 до 0,72 мкм, благодаря чему у пирометров этого типа и у визуальных оптических пирометров эффективные длины волн практически совпадают. Градуировка и поверка фотоэлектрических пирометров данной группы производится с помощью температурных ламп, снабженных стеклом ПС-5 и градуированных на яркостные температуры в свете длины волны 0,65 мкм. К этой группе относится отечественный прибор ФЭП-4 с нижним пределом измерения 800°С, из выпускаемых за границей приборов такого типа можно назвать, например, пирометры «Оптиматик» (США). Вторая группа приборов характеризуется использованием широких спектральных областей излучения. Эффективные длины волн у таких фотоэлектрических пирометров значительно различаются, и яркостные температуры, измеренные приборами с различающимися эффективными длинами волн, характеризуются несравнимыми значениями. Эти фотоэлектрические пирометры невозможно тарировать и поверять с помощью температурных ламп, градуированных в свете какой-либо определенной длины волны, их градуировку проводят только по модели черного тела. Поскольку в настоящее время данные о значениях коэффициентов черноты для большинства физических тел в широком диапазоне длин волн отсутствуют, а имеющихся монохроматических значений, в частности, для λ = 0,65 мкм, далеко не достаточно, переход от яркостной температуры к действительной представляет большие трудности. Поэтому фотоэлектрические пирометры второй группы применяются главным образом в тех случаях, когда по условию технологического процесса контроль температуры тел не требует знания действительной температуры. Некоторые приборы этой группы снабжаются графиком поправок, позволяющим осуществлять переход от показаний этих приборов к действительной температуре тела, либо в процессе работы накапливаются данные о поправках. Ко второй группе относятся приборы ФЭП с нижним пределом измерения 500°С, а существующие датчики позволяют снизить этот предел до -30°С. В качестве примера рассмотрим применяемые пирометры ФЭП-4. В приборах этого типа с диапазоном измерения яркостной температуры от 800 до 4000°С используется вакуумный сурьмяно-цезиевый фотоэлемент типа СЦВ-51, чувствительный к излучению только видимой области спектра. На рис. 2.7 представлены кривые спектральной чувствительности сурьмяно-цезиевого фотоэлемента 1 и пропускания красного светофильтра 2.
Из рис. 2.7 видно, что фотоэлемент СЦВ-51 в сочетании с красным светофильтром КС-15 оставляет излучение с длиной волны от 0,60 до 0,72 мкм, при этом эффективная длина волны пирометра в диапазоне измеряемых температур остается практически постоянной (0,65±0,01 мкм) и температура, показываемая фотоэлектрическим пирометром, как отмечалось выше, будет совпадать с яркостной температурой, измеренной визуальным оптическим пирометром, в пределах суммы допускаемых основных погрешностей обоих приборов. В пирометрах с меньшим нижним пределом применяется кислородно-цезиевый фотоэлемент ЦВ-3, чувствительный к излучению в области длин волн от 0,4 до 1,2 мкм. Эффективная длина волны этих пирометров составляет 0,9-1,1 мкм. Температура, показываемая пирометром этого типа, несколько отличается от яркостной температуры, измеренной оптическим пирометром. Фотоэлектрический пирометр ФЭП-4 (рис. 2.8) состоит из следующих отдельных блоков: первичного преобразователя (визирной головки) 1, включающего в себя фотоэлемент 2, оптическую систему, модулятор света 3, лампу обратной связи 4 и двухкаскадный электронный усилитель 5; силового блока 6; феррорезонансного стабилизатора напряжения 7; быстродействующего автоматического потенциометра 8; разделительного трансформатора 9.
Через второе отверстие 17 в держателе красного светофильтра на катод фотоэлемента подается световой поток от лампы 4, питаемой током выходного каскада силового блока 6. С помощью этой лампы в пирометре осуществляется обратная связь по световому потоку. Перед держателем красного светофильтра, а вместе с тем и перед фотоэлементом установлена заслонка 18 модулятора света 3. С помощью этого устройства световые потоки, падающие на катод фотоэлемента от объекта и лампы обратной связи, модулируются с частотой 50 Гц в противофазе. При неравенстве этих световых потоков в цепи фотоэлемента потечет ток, переменная составляющая которого пропорциональна разности освещенностей катода обоими источниками. Переменная составляющая фототока усиливается электронным усилителем 5, выпрямляется фазовым детектором силового блока б и подается на сетки ламп его выходного каскада – усилителя постоянного тока. В общую цепь катодов ламп этого выходного каскада включена последовательно лампа обратной связи. В цепи лампы ток накала будет меняться до тех пор, пока на катоде фотоэлемента не уравняются световые потоки от источника излучения и лампы. Следует отметить, что световой поток от лампы обратной связи несколько отличается от потока визируемого объекта, однако благодаря большому коэффициенту усиления системы разность между этими потоками мала. Таким образом, с достаточной точностью можно считать, что сила тока в цепи лампы обратной связи однозначно связана с яркостной температурой визируемого тела. В цепь лампы обратной связи включен постоянный калиброванный резистор R, падение напряжения на котором измеряется быстродействующим автоматическим потенциометром, снабженным шкалой, позволяющей производить отсчет яркостной температуры, выраженной в градусах Цельсия. Пределы допускаемой основной погрешности показаний пирометров с диапазоном измерения от 800 до 2000°С не превышают ±1% верхнего предела измерения. Для двушкальных пирометров с диапазоном измерения 1200-2000°С предел допустимой основной погрешности составляет ±20°С, а для второй шкалы с верхним пределом измерения выше 2000° С не превышает l,5% верхнего предела измерения. Время установления показаний пирометра – около 1 с. Порог чувствительности пирометра составляет 0,1% верхнего предела измерения прибора.
|
|||||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 330; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.220.200.197 (0.007 с.) |