IV. Формирование умений и навыков. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

IV. Формирование умений и навыков.

Поиск

Рассматриваем задачи на применение формулы нахождения числа сочетаний из п по k. Для предотвращения формального применения формулы требуем обоснования ее выбора.

Упражнения:

768.

Р е ш е н и е

Выбираем 2 учащихся из 7, порядок выбора не имеет значения (оба выбранных пойдут на олимпиаду как полностью равноправные); количество способов выбора равно числу сочетаний из 7 по 2:

.

О т в е т: 21 способ.

770.

Р е ш е н и е

Выбор 6 из 10 без учета порядка:

.

О т в е т: 210 способов.

772.

Р е ш е н и е

Из 11 человек 5 должны поехать в командировку:

а) Заведующий едет, нужно выбрать еще 4 из 10 оставшихся:

б) Заведующий остается, нужно выбрать 5 из 10 сотрудников:

О т в е т: а) 210 способов; б) 252 способа.

Следующие три задачи – повышенной сложности.

773.

Р е ш е н и е

а) Словарь выбирается, нужно выбрать еще 2 книги из 11:

.

б) Словарь не выбирается, выбираем 3 книги из 11:

.

О т в е т: а) 55 способов; б) 165 способов.

774. При решении используется не только формула числа сочетаний, но и комбинаторное правило умножения.

Р е ш е н и е

Сперва выбираем 4 маляров из 12:

способов.

Затем выбираем 2 плотников из 5:

способов.

Каждый из способов выбора маляров можно скомбинировать с каждым выбором плотников, следовательно, всего способов (по комбинаторному правилу умножения): 495 · 10 = 4950.

О т в е т: 4950 способов.

775.

Р е ш е н и е

Нужно сделать два выбора: 3 книги из 10 ( способов) и 2 журнала из 4 ( способов) – порядок выбора значения не имеет. Каждый выбор книг может сочетаться с каждым выбором журналов, поэтому общее число способов выбора по правилу произведения равно:

О т в е т: 720 способов.

V. Итоги урока.

В о п р о с ы у ч а щ и м с я:

– Что называется сочетанием из п элементов по k?

– Запишите формулу вычисления числа сочетаний из п элементов по k.

– В чем отличие сочетания из п элементов по k от размещения из п элементов по k.

Домашнее задание: прочитать п.33, выполнить № 769, № 771, № 783.

З а д а ч а. В классе учатся 16 мальчиков и 12 девочек. Для уборки территории требуется выделить четырех мальчиков и трех девочек. Сколькими способами это можно сделать?

 



Поделиться:


Последнее изменение этой страницы: 2024-06-27; просмотров: 3; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.155.149 (0.009 с.)