Международная премия за популяризацию научных идей георгию гамову 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Международная премия за популяризацию научных идей георгию гамову



В свое время модель Леметра сыграла весьма существенную роль в развитии мировоззрения. Особенно популярной стала она после того, как физик Георгий Гамов (1904–1968) назвал теорию Леметра теорией большого взрыва и доработал ее начальный этап.

Фигура Георгия Антоновича Гамова весьма одиозна. И, наверное, автор бы не стал даже упоминать о его биографии, ограничившись изложением теории, если бы не смерть ученого, которая подвела грустный, но неизбежный итог избранной им для себя жизни.

Родился Георгий Гамов в Одессе, там же начал учиться, наблюдать звезды в подаренный отцом телескоп; в Одессе Гамов кончил и среднюю школу. Отпраздновав это событие, юноша поступил в Ленинградский университет. Годы учебы совпадают со временем бурного становления советской физики. Именно этот период дал нашей стране П. Л. Капицу и Н. Н. Семенова, И. В. Курчатова и Ю. Т. Харитона, В. Н. Кондратьева и А. П. Александрова, И. К. Кикоина и многих других видных ученых наших дней. Сейчас это старшее поколение советских физиков — нобелевские лауреаты, лауреаты Ленинских премий, а главное, люди, чьи имена знает и произносит с уважением народ родной страны…

Со многими из них начинал, был знаком, спорил и работал вместе Георгий Гамов. В 1928 году он защитил диссертацию и был направлен в группе талантливой молодежи в летнюю школу в Геттинген — эту «Мекку науки» начала столетия. Затем он совершенствуется в Кавендишской лаборатории у Эрнста Резерфорда и Чадвика. В Копенгагене он встречается с Нильсом Бором, которому рассказывает о своих работах по квантовой теории и строению ядра. Бор приглашает его на год к себе в Институт теоретической физики, добивается для него стипендии Датской королевской академии наук. Ослепительная научная карьера, огромный талант и блестящие перспективы. В 1931 году Гамов возвращается в СССР и избирается членом-корреспондентом Академии наук СССР — это в двадцать-то семь лет!

Но вот наступает 1933 год. Вместе с другими советскими учеными Георгий Антонович Гамов едет на Сольвеевский конгресс в Брюссель, где получает приглашение прочесть цикл лекций по ядерной физике в Мичиганском университете.

После недолгого пребывания во Франции в институте Пьера Кюри он переезжает в США, где начинает постоянную работу в качестве профессора физики университета Георга Вашингтона в Вашингтоне. Там в сотрудничестве с венгерским эмигрантом Э. Теллером он разрабатывает свою знаменитую теорию бета-распада. Затем публикует ряд работ по теории ядерной жидкости и ядерным реакциям в звездах. Вместе с Шенбергом развивает теорию «Урка процесса», которая привлекла внимание специалистов к роли нейтрино в звездных процессах. (Одессит Гамов не мог удержаться, чтобы не ввести жаргонное словечко для обозначения процессов «похищения» энергии. Так «урки» получили гражданство в научной литературе.) Здесь же начинает разрабатывать теорию образования элементов. Вступление Америки во вторую мировую войну не изменяет интересов Гамова. Он становится научным консультантом ряда военных учреждений, принимает участие в манхэттенском проекте, консультируя группу Лос Аламоса, занимающуюся непосредственно созданием атомной бомбы.

Позже его совместные работы с Теллером помогли американцам соорудить и взорвать свое первое водородное чудовище… Пожалуй, тогда-то впервые и поднялся в его душе гребень волны сожаления особенно высоко. Ни отъезд его, Гамова, одного из ведущих советских физиков тридцатых годов, ни война, выигранная его родным, но покинутым им народом, не остановили развитие науки. А не уехал бы он, этот процесс, может быть, шел бы еще быстрее. Впрочем, в то время, когда американцы еще только монтировали неуклюжую установку для производства водородного взрыва, в Советском Союзе уже была готова, испытана и передана в серийное производство водородная бомба.

 

После войны Гамов отходит от ядерной физики. Отголоски его прошлых трудов еще слышатся в разрабатываемой им космологической гипотезе большого взрыва в 1947–1949 годах. Но в 1954 году он резко меняет направление исследований и начинает заниматься вопросами биологии. И здесь снова вспышка таланта — Гамов предлагает идею генетического кода и публикует целый ряд пионерских работ по биологии.

В 1956 году он переходит на работу в университет Колорадо, где остается уже до конца жизни.

20 августа 1968 года Георгия Антоновича Гамова не стало. Переехав в США, он оборвал все связи с родиной, полностью натурализовался. И все-таки до конца жизни оставался русским, тосковал по России и умер одиноким и скорбным — обычная судьба эмигранта. Независимо от таланта, ума или иных качеств нет для человека более горькой судьбы, чем потерять родину. Даже если внешне его жизнь будет казаться парадом благополучия.

В Америке Гамов много занимался популяризацией науки. Им написано более сотни научных работ и около тридцати научно-популярных статей. Издано около тридцати томов его книг, из них двадцать три научно-популярные. Гамов был членом многих академий мира, а в 1956 году ООН присудила Гамову Международную премию за выдающийся вклад в популяризацию научных идей. Подобный акт — большая редкость, и надо быть действительно «выдающимся популяризатором», чтобы в нашем мире удостоиться чести признания… Впрочем, с примером образца популярного мышления Г. А. Гамова читатель сам может познакомиться в следующем параграфе.

 

 

«Big bang», или «Большой взрыв», в науке о происхождении вселенной

Итак, вы помните, уважаемый читатель, что аббат Леметр дал идею «рождения» вселенной. При этом он предусмотрительно не доводил кривую изменения радиуса кривизны до начала координат. Да и сами оси предпочитал рисовать с разрывом в этой «особой» точке. Нет, о начальном периоде развития вселенной профессор Леметр предпочитал не говорить вообще…

Гамов заинтересовался именно началом. Его не устраивали названия — «первичный атом». Он предпочел назвать ком первичной, плотно спрессованной и раскаленной праматерии, находящейся в «довзорвавшемся» состоянии, илемом, позаимствовав этот термин у Аристотеля. (Стагирский философ обозначал так основную субстанцию вселенной.)

По мнению Гамова, эволюция вселенной разбивается на пять стадий. Сначала илем состоял из очень сжатой (плотной) массы водорода, у которого все электроны оболочек вдавлены в протоны ядер, а возникшие в результате этой операции нейтроны сжались еще до предела, образовав однородную массу колоссальной плотности да еще находящуюся при весьма высокой температуре.

В 1948 году Гамов вместе с соавторами Р. Альфером, Г. Бете, фамилии которых удачно образовывали начало греческого алфавита, дал «альфа, бета, гамма-теорию» образования элементов в результате взрыва илема. (Истины ради надо сказать, что Бете никакого участия в этой работе не принимал и его имя понадобилось Гамову для изящества заголовка.) Указанная теория предполагала, что илем разлетелся буквально на отдельные нейтроны. Нейтроны же в существовавших адских условиях быстро распадались на электроны и протоны.

Посмотрите на рисунки. На них представлены пять стадий, или пять эпизодов, из истории вселенной Гамова. Каждый из них помечен временем, в течение которого занавес был поднят.

 

Итак, первый акт — 0÷5 минут от «начала». Илем только что взорвался. Вы видите в кадре смесь частиц. Флегматичные нейтроны, не выдержав чудовищных температур, распадается на протоны и электроны, сопровождаемые юркими фотонами. В такой «атмосфере», несмотря на «тесноту», частицы движутся с энергией, которую можно сравнить с энергией современных ускорителей. В недрах илема яростно кипят ядерные реакции — частицы, сталкиваясь, образовывают ядра легких элементов, которые тут же распадаются…

Второй акт — от пятой минуты до получаса родившегося времени. Это уже не илем, но еще и не вселенная. Вместе с расширением падает температура. Надо полагать, что подобный процесс не является новостью для эрудированного читателя. Вспомните — ведь это не что иное, как хорошо знакомый принцип работы обыкновенного холодильника.

Полчаса непрерывного взрыва достаточно, чтобы заготовить основное количество стройматериала для всей дальнейшей работы. Читатель, конечно, знает, что свободные нейтроны имеют период полураспада всего 12–13 минут. И через полчаса их остается слишком мало для того, чтобы реакции могли идти с прежней легкостью. Вместе с протонами нейтроны образуют дейтоны и тритоны, ядра гелия и других, более тяжелых элементов. Тридцать минут спустя от всего первоначального количества нейтронов остается примерно восьмая часть… Реакции синтеза затухают…

Следующий, третий акт занимает период от тридцатой минуты «действа» до двухсотпятидесятимиллионного года существования. Автор надеется, что читатель понимает, насколько следует доверять приводимым цифрам. Гипотеза есть гипотеза, и самое большое, на что может претендовать ее творец, — это примерный порядок совпадения величин… Итак, через полчаса после взрыва образовавшиеся ядра приступили к ловле бездомных электронов и стали образовывать атомы. Атомы скапливались в облака, которые в дальнейшем дали начало галактикам и звездам. Этот период Гамов характеризует возникновением протогалактики…

Акт четвертый — первый миллиард существования на исходе. Во вселенной возникли галактики, в недрах которых зарождаются протозвезды и, может быть, даже протопланеты.

И наконец, последний акт охватывал следующие четыре миллиарда лет и заканчивался в нашем с вами времени. Всего получалось примерно 5 миллиардов! Но внимательного читателя это не должно удивлять, потому что он помнит, как в шестидесятых годах нашего столетия произошла переоценка временной шкалы в сторону ее увеличения, и пять миллиардов лет вселенной превратились в тринадцать! Впрочем, этот факт еще найдет себе место в нашей книжке. К сожалению, сложная и путаная история космологии не позволяет выстроить все события последовательно в хронологическом порядке. И отступления, забегания вперед неизбежны так же, как неизбежны и некоторые повторения.

Наглядность гипотез Леметра и Гамова привлекли к ним всеобщее внимание. По мнению многих сторонников гипотезы, такой взрыв чем-то должен быть очень похож на взрыв атомной или водородной бомбы; только, понятно, сверхбомбы, супербомбы, сверх-супер-ультра- и т. д. бомбы, бомбы, представить которую себе трудно, просто невозможно, даже обладая сверхфантастическим воображением. Это сравнение, возникшее в период «атомно-водородного бума», распространилось среди самых широких масс. Правда, может быть, причина этого сравнения кроется в том, что именно физики — участники разработки водородного оружия — и были главными болельщиками гипотезы «big bang’a».

Конечно, смущала всех сингулярность, присущая этой модели. Та самая пресловутая особая точка, или нуль-пункт вселенной. И еще смущало то, что в гипотезе так много внимания уделяется первым тридцати минутам после взрыва. Ведь возраст вселенной насчитывает миллиарды лет… По этому поводу уместно предоставить слово самому автору теории.

«Многие люди, — рассуждает Гамов, — считают, что не имеет физического смысла говорить о получасе или часе, который был 5 (сейчас по новой шкале соответственно 10–13 — А. Т.) миллиардов лет назад. Чтобы ответить им, я предлагаю: посмотрим на место в Неваде, где была взорвана несколько лет назад атомная бомба. Это место еще „горячо“ из-за существования долгоживущих продуктов взрыва. Для того, чтобы создать эти продукты, достаточно было миллионной доли секунды. Простая арифметика показывает, что период, прошедший с момента этого взрыва, во столько же раз больше микросекунды, во сколько 5 (соответственно читай 10–13 — А. Т.) миллиардов лет больше „того“ получаса! Но ведь от этой разницы мгновение взрыва не стало для нас менее интересным и менее существенным».

Если все было именно так, как предполагал Гамов, то и сегодня где-нибудь во вселенной можно отыскать следы колоссальных температур, царствовавших в первые мгновения «большого взрыва»?.. Ну пусть хоть «остывшие остатки» каких-то первоначальных квантов…

Пока вещество находилось в ионизованном состоянии, оно представляло собой горячую плазму из электронов, протонов и ядер легких элементов (в основном гелия).

Плазма эта сначала находилась в динамическом равновесии. Это значит, что частицы излучают и поглощают одинаковые количества квантов электромагнитной энергии. Температура излучения находится в полном соответствии с температурой плазмы. Но постепенно расстояния между частицами увеличиваются. (Ведь взрыв сообщил им громадные скорости разбегания.) Теперь, чтобы излученный квант энергии мог добраться до частицы, способной его поглотить, нужно было время. В пути энергия кванта уменьшается.

Таким образом, с расширением вселенной температура излучения падает. Чем дальше лететь кванту, тем «холоднее» он должен становиться. (Вспомните, что красное смещение от далеких галактик больше, чем от близких.)

Через несколько сотен тысячелетий после «начала» температура уже изрядно «разжижившейся» среды падает примерно до трех-четырех тысяч градусов. Теперь уже не все излученные кванты поглощаются возбужденными частицами. Среда становится «прозрачной» для излучения, оно как бы «отрывается» от нее и начинает «гулять» по вселенной. Вот эти-то электромагнитные волны и должны бы дожить до наших дней, пусть «постаревшие», «охладившиеся». Расчеты теоретиков показали, что, добравшись до нас, до нашего времени, это излучение должно иметь температуру не выше трех-четырех градусов по Кельвину.

Значит, «горячая» модель Гамова требовала, чтобы в наши дни во вселенной можно было обнаружить излучение в 3–4°К. В 1948 году средств для подобных наблюдений еще не существовало. Радиоастрономия в послевоенные годы только начинала свой «марш-бросок», и измерение излучения столь низких температур казалось радиоастрономам тех лет делом совершенно безнадежным.

 

В середине XX столетия, впрочем, как и во все другие времена, когда человечество оказывалось незанятым на фронтах, вторая мировая война уступила место войне «холодной». Вопросы происхождения вселенной снова оказались в центре ожесточенной идеологической борьбы.

Одно из наиболее влиятельных направлений идеалистической философии — неотомизм. Неотомисты широко пользуются введенным Фомой Аквинским еще в XIII веке принципом гармонии разума и веры, с особой охотой используя нерешенные вопросы науки для защиты религиозных догматов. Недаром еще в 1879 году неотомизм был объявлен официальной философской доктриной католической церкви. А в 1951 году папа римский Пий XII выступил с большой речью, призывая признать достижения современной науки в качестве доказательств всемогущества бога.

Часть ученых — представителей материалистического направления — поспешили решительно отмежеваться от идеалистических тенденций в космологии и… впали в другую крайность. Вместе с богом они отреклись от всей теории расширяющейся вселенной. Довольно долго среди материалистов «хорошим тоном» считалась верность идее бесконечной вселенной, тогда как релятивистская космология объявлялась «бесплодной математической игрой, лишенной какого бы то ни было астрономического значения»; общая же теория относительности рассматривалась как «математические упражнения, не имеющие ничего общего с космологией».

Так споры о моделях мира переплелись со спорами о мировоззрении двух непримиримых лагерей: материализма и идеализма.

Между тем спорящим сторонам предстояло договориться прежде всего о самом предмете спора. Потому что, как выяснилось, далеко не все представители бурно развивающейся космологии вкладывали в термин «вселенная» одинаковое понятие. Короче говоря, к середине текущего столетия космология представляла собой хорошо и со знанием дела перепутанный клубок противоречий. Распутывать его выпало на долю ученым нашего поколения.

 

Глава девятая

 

 

в которой читатель наконец-то, во-первых, попадает в собственное время, во-вторых, знакомится с результатами практической деятельности астрономов и космологов и, в-третьих… В-третьих, правда по замыслу автора, читатель должен убедиться, что легче ему от всего вышеизложенного не стало

Удивительны науки о вселенной. С одной стороны, их методы позволяют заметить разницу в положении небесных объектов, измеряемую долями угловых секунд. И тут же, рядом, существуют приближения, о которых говорят, что результаты вполне хороши, если не отличаются больше, чем на порядок…

Космология за последнее время из разряда чисто умозрительных наук переходит в разряд наук физических. И как всякая развивающаяся отрасль знания, переживающая период становления, она занята уточнением и переоценкой своих результатов. Поэтому автор хотел бы предупредить читателя, что значения многих величин пока не окончательны. У разных наблюдателей одни и те же исследования сегодня еще дают разные результаты, которые лишь постепенно приближаются к истине. Нужно помнить, что каждая цифра во внегалактической астрономии дается ценою невероятного напряжения, ценой дьявольских ухищрений как теоретических, так и экспериментальных. А ведь внегалактическая астрономия — это один из главных поставщиков фактического материала для космологии. Читателю, проникшемуся идеями расширяющейся вселенной, должно быть уже совершенно ясно, что чем дальше от нас расположен объект наблюдения, тем больше времени требуется свету, чтобы добраться до земных телескопов, а следовательно, тем более «молодым» мы этот объект видим…

Свет и радиоволны, несущие нам основную информацию о небесных объектах, пробегают в космосе примерно 300 тысяч км/сек. Солнце находится в восьми минутах светового хода от нас. Значит, мы каждый раз, взглянув на наше светило, видим его таким, какое оно было восемь минут назад. А если объект наблюдения находится дальше?

Свет от Проксимы центавра добирается до Земли четыре с лишним года. Следовательно, потухни соседка нашего Солнца в одночасье, мы бы узнали об этом лишь через четыре с лишним года.

А если такой объект наблюдения, как, например, галактика туманность Андромеды, отодвинут от нас миллиона на два световых лет? Значит, мы и видим его сейчас таким, каким он был два миллионолетия назад, когда световой поток покидал его звездные просторы. Рассматривая последовательно все более удаленные небесные объекты, мы словно пользуемся «машиной времени» для того, чтобы проникнуть в прошлое нашей вселенной.

«Машиной времени»! Впереди у нас еще увлекательное путешествие при помощи этого фантастического вида транспорта. Впрочем, фантазия никогда не служила науке помехой…

 

 



Поделиться:


Последнее изменение этой страницы: 2022-09-03; просмотров: 43; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.182.45 (0.03 с.)