Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

В поисках гармонии вселенной

Поиск

Когда Альберт Эйнштейн был еще Альбертхеном, брат отца — дядя Якоб — принес ему книжку по алгебре.

— Алгебра — это веселая наука, — говорил он, держа мальчика на коленях. — Когда мы не можем обнаружить зверя, за которым охотимся, мы временно называем его Икс и продолжаем охоту, пока не поймаем и не засунем его в сумку.

И двенадцатилетний Альберт с увлечением выслеживал хитрого Икса в дебрях математических джунглей. Потом он познакомился с геометрией. Стройность, строгость и красота логики Эвклида заворожили его… Ах, как это важно уметь увидеть красоту математического доказательства! Для этого не обязательно быть Эйнштейном и самому искать наиболее выразительное решение. Для этого часто бывает достаточно, чтобы кто-то показал его красоту. В этом, наверное, заключается одна из главных задач настоящего учителя…

Бедный студент-медик, обедавший в семье Эйнштейнов по пятницам, посоветовал Альберту читать научно-популярные книги. И эта литература разбудила в Эйнштейне интерес к тому, как устроен мир.

Особенно большое влияние оказала на формирование мировоззрения юноши книга немецкого врача и философа Людвига Бюхнера «Сила и материя». Материализм и атеистический характер этого сочинения казались необычайно смелыми и новаторскими в годы подъема естествознания в Германии. Книга много раз переиздавалась, несмотря на упрощенный подход к философским вопросам.

Вульгарный и плоский материализм книги Бюхнера был подвергнут критике Ф. Энгельсом и В. И. Лениным. Но его взгляды помогли Эйнштейну навсегда искоренить в себе веру и стать атеистом. Потеряв веру в религиозную догму, Эйнштейн посвятил жизнь поискам гармонии мироздания, способной истиной заместить миф.

Находясь уже в зрелом возрасте, Эйнштейн рассказывал, что когда ему было шестнадцать лет, он впервые задумался о скорости распространения света для двух движущихся относительно друг друга наблюдателей. В те годы Альберт уже достаточно интересовался физикой, чтобы знать о нашумевших результатах опыта Майкельсона и Морли. Вот как сам он свидетельствует об этом. «Нет сомнения, — пишет А. Эйнштейн в письме к Бернарду Джеффу, автору прекрасной биографии Майкельсона, — что опыт Майкельсона оказал значительное влияние на мою работу, поскольку он укрепил мою уверенность в правильности принципа специальной теории относительности. С другой стороны, я был почти полностью убежден в правильности этого принципа еще до того, как узнал об эксперименте и его результате».

В основе классической механики лежали, в частности, два фундаментальных положения. Первое заключалось в механическом законе сложения скоростей. Мы уже приводили пример с движением пассажира вдоль вагона мчащегося поезда. Чтобы немного разнообразить тему, представим себя на палубе парохода во время шторма. Волны бегут в одном направлении и с одинаковой скоростью. По приказанию капитана корабль поворачивается кормой к ветру и устремляется вслед за волнами. Проходит некоторое время. Скорость корабля сравнивается со скоростью волн, и картина шторма вокруг нас застывает. Наш теплоход, словно «Летучий голландец», замер на гребне волны и оказался как бы в мире неподвижных водяных горбов и впадин.

Второе положение — это принцип относительности. Вот как объяснял его сам Эйнштейн: «Представим себе двух физиков, у каждого из которых лаборатория, снабженная всеми мыслимыми физическими аппаратами. Лаборатория одного из физиков находится в открытом поле, а лаборатория другого в вагоне поезда, быстро несущегося в некотором направлении. Принцип относительности утверждает: два физика, применив все аппараты для изучения всех существующих в природе законов — один в неподвижной лаборатории, другой в вагоне, найдут, что эти законы одни и те же, если вагон движется равномерно и без тряски. Если сказать в более абстрактной форме, то это выглядит так: согласно принципу относительности законы природы не зависят от переносного движения систем отсчета». Оговоримся, что до Эйнштейна в формулировке принципа относительности фигурировали не любые возможные законы природы, а лишь законы механики.

Повторяя про себя принципы классической механики, Альберт Эйнштейн возвращался мыслью к результатам опыта Майкельсона. Американцу не удалось обнаружить сложения скорости света со скоростью Земли. Почему?.. Эйнштейн пытался представить себя движущимся вслед за лучом света со скоростью 300 тысяч километров в секунду. Тогда, следуя законам классической механики, он должен был бы видеть свет в виде покоящегося в пространстве переменного электромагнитного поля. Однако представить себе такую картину было невозможно, она просто не имела права на существование.

«Интуитивно мне казалось ясным с самого начала, что с точки зрения такого наблюдателя все должно совершаться по тем же законам, как и для наблюдателя неподвижного относительно Земли, — говорил он в дальнейшем, рассказывая о парадоксе, занимавшем его мысли в пору юности. — В самом деле, как же первый наблюдатель может знать или установить, что он находился в состоянии быстрого равномерного движения?»

Мы, современники XX столетия, привыкли к неожиданным выводам теории. Нас даже удивить, к сожалению, стало трудно открытием парадоксальных явлений или доказательствами того, что еще вчера казалось фантастикой. Это сомнительная привилегия нашего века. В XIX столетии не было ни такого обилия сногсшибательных открытий, ни такой массы научно-фантастических романов, отнимающих у читателей под видом прославления науки способность к удивлению.

Эйнштейн окончил Цюрихский политехникум и после довольно продолжительных поисков устроился на постоянную работу в Берне, заняв скромную должность технического эксперта третьего класса в патентном бюро. Начался самый счастливый и плодотворный период в его жизни. Биографы часто сравнивают это время с годами жизни Ньютона в Вулсторпе во время лондонской чумы.

«Составление патентных формул было для меня благословением, — писал Эйнштейн в своей автобиографии за месяц до смерти. — Оно заставляло много думать о физике и давало для этого повод. Кроме того, практическая профессия — вообще спасение для таких людей, как я: академическое поприще принуждает молодого человека беспрерывно давать научную продукцию и лишь сильные натуры могут при этом противостоять соблазну поверхностного анализа».

В Берне Эйнштейн близко сошелся с несколькими молодыми людьми, интересовавшимися, как и он, физикой и математикой. Образовалась удивительно дружная компания, названная ее членами «академией Олимпией». Молодые люди вместе гуляли, вместе читали философские книги, трудно поддающиеся чтению в одиночку, много спорили и обменивались идеями. Эйнштейн, будучи в жизни весьма непритязательным человеком, был счастлив. «Подумайте, — писал он одному из друзей, покинувшему Берн, — ведь кроме восьми часов работы, остается восемь часов ежедневного безделья и сверх того воскресенье».

Результатом столь интенсивной интеллектуальной жизни и полного пренебрежения к достижению житейских благ явилось то, что в 1905 году Эйнштейн написал несколько научных статей, которые послал в журнал «Анналы физики». Одна из них, как писал он в письме к приятелю, «…исходит из понятий электродинамики движущихся тел и видоизменяет учение о пространстве и времени…». Это и была частная, или специальная, теория относительности. В ней, обобщив классический принцип относительности, выдвинутый Галилеем лишь по отношению к ходу механических процессов, на оптические и любые другие явления и заменив механический закон сложения скоростей постулатом независимости скорости света от скорости движения источника, Эйнштейн построил новую механику. Его теория была свободна от противоречий, с которыми столкнулась классическая теория в объяснении опытов Майкельсона и Кауфмана.

Проницательный читатель уже, наверное, заметил повторение истории с открытием неэвклидовой геометрии.

Отбросив безусловную глобальную справедливость постулата Эвклида о параллельных и заменив его, казалось бы, абсурдным утверждением обратного характера, Лобачевский пришел к открытию новой геометрии.

Точно так же «абсурдный» постулат о постоянстве скорости света привел Эйнштейна к созданию новой механики, отличной от классической механики Ньютона. Аналогию можно продолжить. Точно так же, как мало отличается геометрия Лобачевского для небольших расстояний от геометрии Эвклида, так и механика Эйнштейна дает результаты, практически не отличающиеся от классических результатов для скоростей, много меньших скорости света.

Автор уже говорил о том, что о теории относительности написано много прекрасных книг советскими и зарубежными специалистами. Какая-нибудь из них наверняка лежит и на вашей полке, дорогой читатель. И потому автор не станет изощряться в поисках новых примеров и аналогий. Тем более что в наши дни теория относительности перестала быть чем-то из ряда вон выходящим. С ее парадоксами ребята впервые знакомятся на страницах приключенческих романов, затем учат ее в школе и на первых курсах институтов. Правда, при этом некоторые пользуются модным названием лишь для того, чтобы, взмахнув рукой, произнести сакраментальную фразу: «Все равно все в жизни относительно». Расширяя несколько представление о смысловых особенностях сочетания слов «теория относительности», автор хотел бы напомнить: термин «теория относительности» не имеет в виду относительность человеческих знаний, а лишь относительную равноценность систем отсчета (или систем координат), движущихся с постоянной скоростью друг относительно друга. Не более…

 

 

Четвертое измерение

Профессор математики Герман Минковский, лекции которого так старательно некогда прогуливал студент Эйнштейн, с удивлением говорил профессору физики Максу Борну после того, как прочитал статью в «Анналах физики»: «Это было для меня большой неожиданностью. Мой цюрихский студент Эйнштейн?.. Да ведь раньше он был настоящим лентяем и совсем не занимался математикой…»

В Политехникуме Эйнштейн записался сразу на тринадцать математических курсов, из которых шесть читал профессор Минковский. Но бывал на лекциях редко, предпочитая самостоятельно заниматься интересующими его вопросами. Принудительное изучение предметов было для него невыносимо. «В сущности, почти чудо, — писал он в конце жизни, — что современные методы обучения еще не совсем удушили святую любознательность, ибо это нежное растеньице требует наряду с поощрением прежде всего свободы — без нее оно неизбежно погибает». Здесь, надо думать, Эйнштейн несколько сгустил краски.

Однако нелестное мнение о студенте Эйнштейне не помешало Минковскому настолько проникнуться взглядами специальной теории относительности, что он занялся разработкой ее математического аппарата.

Герман Минковский (1864–1909) прожил недолгую и небогатую внешними событиями жизнь. Он родился в России в маленьком местечке Алексоты Минской губернии. А затем, как и Майкельсона, его увезли родители с родины. Но не за океан, а в Германию. Там он окончил гимназию и университет, там выдвинулся своими работами, посвященными геометрической теории чисел. Сейчас он заслуженно считается основателем этой отрасли математики, несмотря на то, что геометрическими методами в теории чисел до него пользовались и другие математики. Уже в конце своей короткой жизни Минковский занялся геометризацией еще одной теории. На этот раз теории физической, носящей сегодня имя специальной теории относительности.

В 1908 году на собрании естествоиспытателей и врачей в Кельне он прочел свой знаменитый доклад о геометрических основах теории относительности, озаглавленный «Пространство и время».

«…Никто еще не наблюдал, — говорил Минковский, — какого-либо места иначе, чем в некоторый момент времени, и какое-нибудь время иначе, чем в некотором месте». И он называет точку пространства, соответствующую данному моменту времени, «мировой точкой», а совокупность всех мировых точек, которые только можно себе представить, для краткости — «миром». Тогда любому телу, существующему некоторое время в пространстве, будет соответствовать некая кривая — мировая линия.

«…Весь мир представляется разложенным на такие мировые линии, — продолжает свою речь Минковский, — …физические законы могли бы найти свое наисовершеннейшее выражение как взаимоотношения между этими мировыми линиями».

Так возник четырехмерный мир пространства-времени Минковского, созданный специально для того, чтобы решать задачи о явлениях, происходящих с субсветовой скоростью, с помощью новой теории относительности.

Вспомним еще раз о сути четырехмерности этого мира, чтобы убедиться, что это не чудо.

Чем же отличается привычный нам трехмерный мир от четырехмерного пространства-времени Германа Минковского? Прежде всего это последнее — вовсе не чудо! Не какое-то новое изобретение чудака математика, а вполне реальный мир, в котором живем мы с вами, уважаемый читатель. Надо только взглянуть на окружающее чуть-чуть с иной точки зрения. Приведем пример…

Автор надеется, что читатель не станет протестовать против утверждения, что любое событие происходит всегда в некоторой точке пространства и в некоторый момент времени. Даже самым выдающимся детективам нашего времени для распутывания и восстановления динамической картины происшествия нужны ответы на вопросы: где? и когда?

На первый вопрос: «Где?» — нетрудно ответить, зная собственные координаты, скажем, x1, y1, z1, и координаты места происшествия: x2, y2, z2. При этом вы прикидываете величину пути, решая известное, уравнение: r 2 = (x1 ― x2)2 + (y1 ― y2)2 + (z1 ― z2)2, и получаете полную пространственную обстановку события «в ньютоновском смысле».

Чтобы придать картине динамичность, вы должны ответить на второй вопрос «Когда?». Для этого примерный момент происшествия и момент получения сообщения о нем обозначаются соответственно t2 и t1. И составляется еще одно уравнение временного промежутка: t = t2 ― t1.

Только вооружившись указанными выше уравнениями, вы можете начинать розыск.

Однако насколько ускорилось бы следствие, если бы мосье Эркюль Пуаро и комиссар Мегре знали и пользовались бы геометрическими основами теории относительности.

В четырехмерном мире пространства-времени вместо двух равенств вводится единый пространственно-временной интервал между событиями:

S 2 = (x1 ― x2)2 + (y1 ― y2)2 + (z1 ― z2)2 ― c 2(t1 ― t2)2.

Здесь c — скорость света, равная приблизительно 300 тысячами километров в секунду. Произведение c 2 · (t1 ― t2)2 имеет ту же размерность, что и остальные члены уравнения, и потому с формальных позиций здесь тоже все обстоит благополучно. Но самое главное заключается в том, что написанное уравнение не меняется при переходе от одной системы отсчета, движущейся прямолинейно и равномерно, к другой, движущейся не менее прямолинейно и не менее равномерно, но в другом направлении и с иной скоростью. Говорят, такое уравнение инвариантно, а системы инерциальны.

Теперь автор призывает читателя обратить внимание на сходство обоих уравнений: для привычного нам трехмерного мира и мира четырехмерного пространства-времени. Разница всего в одном члене со знаком минус… И вот тут-то и поджидает нас знатная западня-ловушка!.. В зависимости от величины c 2(t1 ― t2)2 квадрат интервала S 2 может быть больше нуля, равен нулю или даже меньше нуля. Это значит, что в отличие от обычного эвклидова пространства ньютоновской механики «мир» Минковского делится на области, разграниченные поверхностями, которые можно построить, положив S 2 = 0! Такие поверхности называются световыми конусами.

 

А теперь, если читатель согласен пожертвовать одним из пространственных измерений, можно попробовать изобразить мир с двумя оставшимися пространственными координатами и одной временной. Посмотрите, пожалуйста, внимательно на рисунок: перед вами, как говорят специалисты, трехмерный пространственно-временной континуум. Внутри конусов, где S2 меньше нуля, мы встречаемся с миром нормальных причинно связанных событий. Здесь промежуток между исходной мировой точкой О и любой другой, находящейся внутри данного светового конуса, таков, что сигналы имеют вполне достаточное время для прохождения из одной точки в другую со скоростью, не превышающей скорость света.

Интересно отметить, что нижний конус по отношению к точке O является областью абсолютного прошлого. Верхний конус — абсолютного будущего. И читатель, наверное, догадался сам, что центральная точка O связывается с любым исходным событием.

Световой конус прошлого включает все направления, по которым информация, переносимая светом, от небесных объектов поступает к наблюдателю. При этом наблюдатель всегда находится в той точке пространства и в тот момент времени, через которые проходит вершина светового конуса.

Один из сотрудников Эйнштейна в Принстоне, ныне профессор физики Сиракузского университета в Нью-Йорке П. Бергман, приводит в своей книге «Загадка гравитации» чрезвычайно интересный пример, поясняющий описываемую модель: «…любое направление на световом конусе прошедшего может быть сопоставлено с точкой на небесной сфере, представляющей собой ту картину, которая открывается нам, когда мы рассматриваем небо и звезды (в точности так же, как глобус отражает наше представление о Земле). Угол между двумя видимыми положениями звезд (измерение таких углов очень важно для астрономов) — это угол между двумя световыми направлениями на световом конусе прошедшего. Если два наблюдателя движутся относительно друг друга со скоростями, сравнимыми со скоростью света, то определенные ими углы между направлениями на одни и те же звезды не будут совпадать. Так и должно быть, потому что относительные положения звезд существенно зависят от движения Земли, определяемого в конкретной инерциальной системе отсчета. Однако скорость Земли за полгода меняется на две десятитысячные доли (2·10-4) от скорости света из-за годичного движения Земли вокруг Солнца. Из-за этого возникает видимое смещение звезд. Это явление известно под названием аберрации света».

Совсем иная картина ожидает нас в области вне конусов. Причинная связь с событием, находящимся вне светового конуса, невозможна в принципе, потому что требует сверхсветовой скорости.

Конечно, нарисованная картинка световых конусов никогда не остается неподвижной. Центральная точка O, в которой сидите вы, уважаемый читатель, даже если вы сидите в своей системе отсчета совершенно неподвижно, есть ваша «мировая точка». И она непрерывно ползет по оси времени, увлекая за собой, как улитка домик, световые конусы.

Введя понятие четырехмерного мира событий, Минковский внес существенный вклад в развитие теории относительности, точно так же, как и в развитие пространственно-временных представлений современной физики.

«Воззрения на пространство и время, которые я намерен развить перед вами, возникли на экспериментально-физической основе. В этом их сила. Их тенденция радикальна. Отныне пространство само по себе и время само по себе должны превратиться в тень, и лишь некоторый вид соединения обоих должен сохранять самостоятельность» — так говорил он на собрании в Кельне перед обществом врачей и естествоиспытателей в 1908 году.

А теперь попробуем сделать предварительный и совсем небольшой вывод. Ньютонова теория удовлетворительно описывала события, принимая пространство существующим абсолютно, независимо ни от времени, ни от материи, заключенной в пространстве. Не зависело ни от чего и время, единое мировое время, идущее для всего бесконечного мира одинаково.

Скоро, однако, стали накапливаться ошибки, парадоксы, не получающие объяснения с позиций классической ньютоновой теории. И тогда усилиями Фитцджеральда, Лоренца и Пуанкаре были выдвинуты новые идеи, которые легли в основу разработанной Эйнштейном специальной теории относительности. Эта теория разрушала старые представления о мироздании. Она не отказалась от теории Ньютона, нет! По-прежнему, если события происходили со скоростями, ничтожными по сравнению со скоростью света, «старые добрые уравнения, сэра Исаака» верно служили человечеству. Новые же выводы обобщали их для субсветовых скоростей. Конечно, относительный мир Эйнштейна был далеко не таким уютным и привычным, как мир Ньютона. Ему не хватало определенности, математической фундаментальности, и, если бы автор не боялся этого слова, он бы сказал, ему не хватало «абсолютности», но абсолютности в новом, уже не в ньютоновском смысле.

И вот тут-то подошло время для упоминания о трудах Минковского. Минковский пишет: «Понятия пространства ни Эйнштейн, ни Лоренц не касались…» О Лоренце он говорит, что тот верил в существование абсолютно покоящегося эфира и абсолютного времени. Об Эйнштейне — что тот «отвергал время как понятие, „однозначно определенное событиями“». На пересмотр понятий пространства и времени Минковский претендовал сам. В своих построениях он вместо абсолютного ньютонова пространства и абсолютного ньютонова времени, отброшенных новой теорией, ввел свой абсолютный мир пространства-времени, который описывал действительность на новом уровне, более сложном, но и более близким к природе, к истине.

 

 



Поделиться:


Последнее изменение этой страницы: 2022-09-03; просмотров: 57; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.18.135 (0.016 с.)