Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Условия возникновения и особенности резонансов напряжения и токов.

Поиск

Резонанс напряжений

Если последовательно с генератором соединить конденсатор и катушку индуктивности, то, при условии равенства их реактивных сопротивлений, возникнет резонанс напряжений. При этом активная часть Z должно быть как можно меньшей.

 

Стоит отметить, что индуктивность и емкость обладает только реактивными качествами лишь в идеализированных примерах. В реальных же цепях и элементах всегда присутствует активное сопротивление проводников, хоть оно и крайне мало.

При резонансе происходит обмен энергией между дросселем и конденсатором. В идеальных примерах при первоначальном подключении источника энергии (генератора) энергия накапливается в конденсаторе (или дросселе) и после его отключения происходят незатухающие колебания за счет этого обмена.

Напряжения на индуктивности и емкости примерно одинаковы, согласно закону Ома: U=I/X. Где X — это Xc емкостное или XL индуктивное сопротивление соответственно.

Цепь, состоящую из индуктивности и емкости, называют колебательным контуром. Его частота вычисляется по формуле:  Период колебаний определяется по формуле Томпсона:

Так как реактивное сопротивление зависит от частоты, то сопротивление индуктивности с ростом частоты увеличивается, а у ёмкости падает. Когда сопротивления равны, то общее сопротивление сильно снижается, что отражено на графике:

Основными характеристиками контура являются добротность (Q) и частота. Если рассмотреть контур в качестве четырехполюсника, то его коэффициент передачи после несложных вычислений сводится к добротности: K=Q

А напряжение на выводах цепи увеличивается пропорционально коэффициенту передачи (добротности) контура. Uк=Uвх*Q

При резонансе напряжений, чем выше добротность, тем больше напряжение на элементах контура будет превышать напряжение подключенного генератора. Напряжение может повышаться в десятки и сотни раз. Это отображено на графике:

 

Потери мощности в контуре обусловлены только наличием активного сопротивления. Энергия из источника питания берется только для поддержания колебаний.

Коэффициент мощности будет равен: cosФ=1. Эта формула показывает, что потери происходят за счет активной мощности: S=P/Cosф

Резонанс токов

Резонанс токов наблюдается в цепях, где индуктивность и емкость соединены параллельно.

Явление заключается в протекании токов большой величины между конденсатором и катушкой, при нулевом токе в неразветвленной части цепи. Это объясняется тем, что при достижении резонансной частоты общее сопротивление Z возрастает. Или простым языком звучит так – в точке резонанса достигается максимальное общее значение сопротивления Z, после чего одно из сопротивлений увеличивается, а другое снижается в зависимости от того растет или снижается частота. Это наглядно отображено на графике:

 

В общем, всё аналогично предыдущему явлению, условия возникновения резонанса токов следующие:

1.Частота питания аналогична резонансной у контура.

2.Проводимости у индуктивности и ёмкости по переменному току равны BL=Bc, B=1/X.

 

 Активная, реактивная и полная мощность в цепи переменного тока.

Активная мощность

В цепи с чисто активным сопротивлением она равна:

 Если принять  и  тогда выйдет:

Где . Исходя из выражений выше — активная энергия состоит из двух частей — постоянной  и переменной  , которая меняется с двойной частотой. Среднее ее значение

Отличие реактивной мощности от активной

В цепи, где есть реактивное сопротивление (возьмем для примера индуктивное) значение мгновенной мощности равно:  

Соответственно  и  в итоге получим:

Данное выражение показывает, что реактивная энергия содержит только переменную часть, которая изменяется с двойной частотой, а ее среднее значение равно нулю

Если ток и напряжение имеют синусоидальную форму и сеть содержит элементы типа R-L или R-C, то в таких сетях кроме преобразования энергии в активном элементе R вдобавок еще и изменяется энергия электрического и магнитного полей в реактивных элементах L и C.

В таком случае полная мощность сети будет равна сумме:



Поделиться:


Последнее изменение этой страницы: 2022-01-22; просмотров: 127; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.84.207 (0.005 с.)