Поверхность, полученная полиномами Лагранжа. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Поверхность, полученная полиномами Лагранжа.



 

Простейший алгоритм построения поверхности по исходному точечному базису заключается в обобщение методов Лагранжа для нахождения единственного полинома, который будет интерполировать все заданные точки.

 

Этот полином имеет вид:

 

 

Недостатком данного способа – задания поверхности - можно отметить, что при достаточно больших pи q, построенных, таким образом, что на поверхности появляются нежелательные осцеляции, что приводят к выявленным отделением ячеек, с малым количеством точек, описывающиеся каждую ячейку, это влечет за собой понижение степени полинома, описывающиеся данную поверхность, и количество данной поверхностей.

 

Уравнение поверхности в форме Безье.

Пусть кривая прямой, представляется в форме Безье характеристической ломаной, движется в направление “V”, каждая точка (вершина) характеристической ломаной проходит определенный путь, таким образом, получается каркас поверхности (формула) и т.д.

 

 

 

Уравнение полиноминальной поверхности в форме Берштейна-Безье будет иметь вид:

 

 

где  – вершина характеристик многогранника;m – число вершин по направлению V; n – число вершин по направлению U; i – текущая вершина по направлению U;j – текущая вершина по направлению V;

 

 

Описание поверхности методом Кунса.

 

Луч задан на прямоугольной области, сетчатый каркас поверхности, сетки кривых разбивает поверхность на совокупность ячеек, каждый из которых ограничен параметрически, представленных парой U-кривых и V-кривых.

 

Параметрически заданная ячейка поверхности r(U,V) имеет вид границы от 0≤U≤1; 0≤0<1; Представленная внутренняя часть поверхности, ограниченная 4-мя исходными ограниченными кривыми r(U;0); r(1;0); r(U;1); r(0;V).

 

Форрест предложил трактовку алгоритма составляющий уравнение поверхности Кунса, который составляет вследующим для данной ячейки поверхности решается более простая задача, по двум граничным кривым r(0;V); r(1;V) построит линейчатую поверхность, который будет выглядеть следующим образом:

 

Для первой пары:

 

 

Тоже самое со второй парой:

 

 

Сумма дает нам третью поверхность.

 

у которой граничные кривые будут являться суммой граничной кривой и прямого отрезка.

 

Для восстановления исходных граничных кривых необходимо из уравнения суммы вычесть какую-нибудь линейчатую поверхность (формула), граница на которой служат эти прямолинейные отрезки, тогда:

 

 

Отсюда запишем:

 

 

В матричном виде:

 

 



Поделиться:


Последнее изменение этой страницы: 2021-12-15; просмотров: 47; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.12.71.237 (0.005 с.)