Этапы и модель развития систем 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Этапы и модель развития систем



Развитие любой системы проходит четыре этапа: поиск состава, структуры с положением её компонентов в пространстве, адаптацию к сложившимся условиям, и её эволюцию (саморазвитие и самосовершенствование).

Авторские исследования технических и ряда научных систем показало, что вcе описанные выше процессы схематично можно представить условно в виде объёмной волновой модели развития любых систем, представленной на рис. В-2 и  Ви В-3.

Итак, вВ своём развитии системы (научные [7], технические [1]е, социальные и т.д.) проходят три стадии (синтез системы, адаптация к окружающей и внутренней среде, саморазвитие) в четыре этапа [9]:

1. Ппоиск состава (из каких элементов должна состоять система, чтобы выполнить заданную ГПФ?);

 

2.  Ппоиск структуры (как должны быть расположены эти элементы в пространстве по отношению друг к другу и какую иметь структуру, чтобы выполнять свою ГПФ?);

1.  3. Ддинамикуа (каким свойство должна обладать система (процесс) или ее (его) часть, чтобы легко адаптироваться к меняющейся окружающей её среде – природной или технической?).; Самым продолжительным этапом, особенно для техники, является этап динамизации, когда систему адаптируют к условиям, в которых она должна функционировать.

3.

4. э Э волюци ю я или саморазвитие. Чем выше уровень развития системы, тем она становится более управляемой и, в итоге, переходит на уровень самоуправления, самоорганизации. Самым продолжительным этапом, особенно для техники, является этап динамизации, когда систему адаптируют к условиям, в которых она должна функционировать.

Сама волновая модель Земли может быть представлена в виде концентрически расположенных и вложенных в друг друга слоёв (систем), каждый из которых в целом работает на основную ФЦ  надсистемы.:

Земля – биосфера – техносфера – атмосфера – высокоорганизованная плазма – первичные материи (рис. В- 3). При этом развитие любого элемента (системы) из приведенной цепочки можно представить также волной:  поле (плазма) П – вещество В - подсистема ПС – система С – надсистема НС                (продольный разрез волны - рис. В- 4.)

При этом система любого уровня стремится к достижению максимального эффекта на пути реализации идеального конечного результата (ИКР), заложенного в системе.

 

 

Рассмотрим наглядный пример. Как узнать, когда образуется куча?

 

 

Возьмем несколько песчинок и насыпим в одном месте. Кучи нет. Насыпим горсть песка – образуется небольшая кучка. Отличается ли она от рассыпанных частиц? – Да, отличается. Насыпим большую кучу, и обнаружим, что маленькая и большая кучи имеют одинаковый угол при своей вершине – угол естественного откоса. Получается, что куча образуется тогда, когда образуется новое качество. Например, если насыпать кучу песка так, чтобы образовался конус с углом естественного откоса и далее на этот конус попробуем опереть фундамент с выемкой для конуса, он будет самым прочным, т.к. песок не сжимается, а куча уже приобрела самую рациональную форму. Произошел переход количества песчинок в качество – в не сжимаемость конической кучи, т.е. качество не сжимаемости песчинки перешло к куче песка.

А теперь вернемся к Первичным Материям (см. рис. К-12). На рисунке можно видеть, что происходит при синтезе ФПМ из ПМ. При попытке синтезировать ФПМ из ПМ с одинаковым коэффициентом квантования, ничего не получится, т.к. не выполняется условие – наличие перепада мерности между ними на величину Δλ = 0,020203236, т.е. получаем пустое множество из одинаковых ПМ. Это на микроуровне, а на макроуровне возможно объединение одинаковых систем с обретением нового качества.

При объединении двух разных ПМ, отличающихся друг от друга на квант мерности (Δ L = 0,20203236), синтезируется физически плотное вещество АВ, т.е. би-система, далее при синтезе 3-х ПМ образуется вещество АВС и т.д. Наконец при синтезе 7 ПМ образуется наше физически плотное вещество АВС DEFG, которое мы видим и ощущаем органами чувств так, что каждый раз при синтезе определенного количества ПМ образуется новое вещество, т.е. новое качество.

 

Формирование любой системы начинается с поиска её состава:

1. Для технической системы это – Двигатель (Д) или источник энергии (ИЭ), Трансмиссия (Тр), Орган Управления (ОУ) и Рабочий Орган (РО), см. развернутая модель рис. 6.6.;

2.  Для художественной системы -  РО - герой, или объект в фокусе – фокальный объект, среда, действие. Источник Вдохновения (ИВ) (тема, сюжет и т.д.) овладевает Писателем, поэтом (П), который по Замыслу (Писателя - ЗП), « обрабатывает» посредством языка (Я) через Героя (Г) Читателя (Ч), см. развернутую модель художественной системы рис. 6.7.;

3.   Для научной системыНС – системы представлений - об объекте исследования и изучения (фокальный объект (ФО), явление, среда проявление эффекта), Источник Вдохновения (ИВ) овладевает, Объектом Вдохновения (ОВ) – Учёным (У), который посредством инструментов воздействует на природную систему (ПрС) и полученные результаты сравнивает с НС (теорией, гипотезой и.д.) на соответствие ПрС - НС.

Развитие системы представляет собой взаимодействие нескольких тенденций: разворачивание системы с объединением исходных составляющих (на базе их физических свойств и качеств) в более сложные системы, с целью повышения её эффективности при достижении поставленной цели, и сворачивание её до идеальной системы в инерционном представлении  или  системы представлений об объекте познания в неинерционном состоянии (научные системы)  вплоть до рождения новой системы, продолжающей своё развитие по прежнему алгоритму (рис. В- 4.1).

Разворачивание системы осуществляется с целью поиска новых полезных (потребитель-ских) функций будущей идеальной и гармоничной системы, сопровождается её усложнением с одновременной идеализацией (упрощением) в оперативной зоне (там, где возникает конфликт, противоречие) путем передачи функций ряда подсистем «идеальному веществу», которое обладает только заданными свойствами. При этом, разворачиваясь, система как бы «утяжеляется», стремясь перейти на верхние этажи системы (в иерархии систем) – в НадСистему, но вектор её развития все время устремлен к центру волны – к области вещества (В), в котором рационально соборно объединены требуемые физические качества и свойства, и, в которое она в итоге сворачивается и поддается эффективному программированию (см. рис. В-5.). Если речь вести о научных системах, идет усложнение системы представлений, уточнение парадигмы и создание более гармоничной теории.

После формирования моно-системы (окончания этапа поиска состава), происходит интенсивное еёе развитие, как на уровне системы (путем дальнейшего повышения её главной полезной функции (ГПФ)), так и на уровне надсистемы (путем применения её в качестве подсистемы, системы более высокого ранга), в которую она включается, адаптируя её к идеальной работе на благо цели надсистемы. Далее, с целью увеличения КПД и эффекивности системы, увеличивается степень её соборности за счет объединения с себе подобными, альтернативными или иными системами с функциями целей, направленных на повышение эффективности уже соборной системы по линиям развития моно-С би-С – поли-С – сложные С. Но в процессе насыщения исходной системы различными буферными системами происхят сбои в работе и система начинает «освобождаться» от «лишних» систем путем их сворачивания в более компактные системы, с сохранением  обетенных ими полезных функций..

Процесс Сворачивания системы сопровождается передачей всех функций системы или её подсистем системам более низкого ранга, а в итоге - «идеальному» (не имеющих лишних качеств и свойств) веществу или системам, обладающим свойствами, аналогичными функциям цели (ФЦ) сворачиваемых подсистем или систем (см. рис. В-4.1)). Заканчивается процесс сворачивания системы синтезом новой моно’-системы с иным физическим принципом функционирования и началом нового этапа развития системы путем разворачивания её в новых условиях. В целом процесс развития системы в течение одного цикла включает, как отмечено выше, следующие крупные этапы: поиск состава и структуры системы с положением её в пространстве à адаптация системы к окружающей среде (через механизмы динамизации) à переход к самонастраивающимся и самоуправляемым системам (через введение обратной связи).

Развитие систем представлено в виде объемной волновой модели (рис. В-3), продольный разрез которой представлен на рис. В-4. и рис. В-4.1.

    Как видно из схемы процессы развертывания системы до уровня надсистемы и поглощения системы «идеальным» веществом (В1, В2, В3, В n) идут параллельно.

Этап поиска состава и структуры, а также динамизация будущей системы заканчивается синтезом моно’-системы (моно-С1), в которой присутствует минимально необходимое количество составляющих систему компонентов.

После синтеза моно-системы начинается её жизнь в новой среде, для которой она и создана, этап её внедрения (для искусственных систем) и интенсивного развития: подъем и разворачивание системы (поиск новых полезных функций (ПФ) и подсистем (ПС)) по линиям:

5.   моно-С би-С поли-С сложные системы (рис. В-5). Например, по вертикали: одноэтажный дом двухэтажный дом многоэтажный дом …(по горизонтали) жилой комплекс дом-полис …; Объединение однородных систем или элементов с одинаковыми или разными функциями.

6. Объединением разнородных систем или элементов. Особенно это касается развития научных систем.

Возможны два пути объединения систем.

7. Первый путь - объединение систем с разными функциями. Объединение осуществляется по тем признакам, свойствам и организации, которые имеются у каждой из совмещаемых систем, т.е. по их совместимости по тем или иным признакам и качествам. В результате создаются многофункциональные системы, например, часы с микрокалькулятором и радио, музыкальный центр, трактор "Беларусь" – совмещает дополнительно функции экскаватора, бульдозера и погрузчика. В науке: например, объединение физики и биологии, истории и математики и т.д.

4. моно-С С1 С2 С3 ….. Насыщение исходной системы различными подсистемами, позволяющими получить соборный эффект. Например: крестьянская изба с печью дом с автономной системой отопления = 1) дом 1) + центральное водоснабжение = С 2 дом (С2) + телефонная, теле-, радиосети = (С 3) ….; В науке: история + математика + экология + климатология…

5. моно-С ПС(подсистема, поглотившая моно-С) В(ПС) П(В)   Например: дом мобильный дом - палатка трансформируемая палатка - одежда одежда-дом с системами обогрева, вентиляции и т.п. подсистемами (костюм полярника, космонавта)

       Второй путь - объединение разнородных систем или функциональных структур с одинаковыми основными функциями, например, биметалл. Каждая по отдельности система (вещество В1) и (вещество В2) обладают набором широкого спектра свойств. При их объединении на том или ином системном уровне возможны различные сочетания   этих свойств. Это создает возможность возникновения неоднородности, нарушения баланса и т.п., и, как следствие, вызывает определенный эффект, который может быть использован в различных системах. Учитывая, что наши будущие технологии будут связаны с созданием (синтезом) искусственных систем, в частности, технических, то имеет смысл рассмотреть развитие природных и искусственных систем параллельно.

Рациональных путей может быть множество, но чаще встречаются следующие пути развития по линиям, указанным выше (рис. 6.10.):

1. моно-С би-С поли-С сложные системы

2. моно-С С1 С2 С3 ….

3. моно-С ПС(моно-С) В (ПС) П(В)

Итак, рассмотрим приведённые закономерности на развитии разных систем, например, технических, художественных, социальных и т.п.

1. моно-С би-С поли-С сложные системы ,

 

 

 

 

 

 

Пример объединения однородных систем с одинаковыми или разными функциями из «Сказа о Ясном Соколе» Н.Левашова. Маточный, космический корабль межгалактического сообщения вайтмара нёс в себе 144 вайтманы – кораблей для межпланетных сообщений. Второй пример только уже объединения разнородных систем или функциональных структур с одинаковыми основными функциями из книги «Неоднородная Вселенная».

Физически Плотное Вещество - одна из форм гибридных материй (это разнородные элементы) постоянно находится под действием постоянного перепада мерности (своего рода межобъектной среды), возникшего в зоне неоднородности макропространства, как результат взаимодействия пространства и свободных материй, заполняющих данное пространство, вызванных стоячими волнами возмущения мерности макропространства (рис. К-12).

 

 

В результате этого, все физически плотные объекты вынужденно двигаются от края зоны неоднородности макропространства к её центру. В этом проявляется системный эффект виде гравитации, гравитационного поля планеты или любого другого материального макрообъекта.

На рис. В-2. (подробности в уроке № 6 в сб. 20 уроков Познания) представлена волновая модель эволюции систем из первичных материй на всех системных уровнях [4].



Поделиться:


Последнее изменение этой страницы: 2021-08-16; просмотров: 143; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.150.59 (0.027 с.)