![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Системы и законы их развития , как основа познанияСодержание книги
Поиск на нашем сайте
Что такое система? Охарактеризуем её. Система - – это объект, обладающий следующими признаками: - создан для определенных целей (набора функций) или одной главной полезной функции (ГПФ); - состоит из частей (подсистем), иерархически взаимосвязанных друг с другом и работающих на ГПФ системы, входя при этом в надсистему, состоящую из одинаковых (однородных) или разных (Разнородных) систем; - имеет определенную структуру. Совокупность всех частей (соборное их состояние) во взаимодействии обладает таким качеством, каким не обладаетни одна из её частей: - существует огромное разнообразие систем, но в основе своей все они, состоя из одних и тех же частейтех же частей, и функциональных структур. При этом системы в своей основе и функциональной наделённости подобны друг другу и отличаются лишь особенностям, присущими конкретным типам системам. В первом случае человек развивает системы, исходя из закономерностей, выявленных им в процессе изучения и познания систем, из которых состоит наш мир, т.е. изначально все закономерности и системные зависимости, вытекают из законов развития самого нашего мира.
Переход от технологий с отходами к технологиям безотходного производства: – задача техники и технологий ближайшего будущего. Создать эти технологии – значит войти в гармоничные отношения с биосферой. Развитие материи можно представить следующей схемой, на которой показана последовательность развития косной и живой материй (рис.4.)..).
Материя вечна и находится в постоянном движении и развитии, в процессе которого она переходит из одной формы в другую. При этом можно предположить, что имеется состояние немерного своего небытия переходящее в целесообразное бытие мерной масштабности в зависимости от неинерционного или инерционного своих состояний, определяющих последующую нематериальную (невещную) или материальную (вещную) форму своего Конструктивного воплощения в среде окружающего принуждения в виде первоосновных частиц и энергии и минимально неделимых действий, из которых поэтапно формируется то, что мы называем материей и энергией в их проявлении в инерциальном и неинерционном состояниях. Познание материи происходит поэтапно методами диалектического материализм – на начальных этапах, далее методами материалистического идеализма и, наконец, – методами
Минимальная модель системы
вух веществ (В1 и В2), называется ВЕПОЛЕМ [4] и является минимальной моделью технической или природной систем. А система представлений о том или ином явлении будет называть научной системой. При этом одно вещество в веполе выполняет функцию активного элемента (в технической системе – инструмента, прибора и т.п., а в природной – системообразующего элемента - ядро в атоме), а второй – пассивного элемента (изделия) или условно фокального (находящегося в фокусе нашего внимания) объекта. Сама система состоит из двух звеньев (П à В), каждое из которых даёт результат R в виде поля, вещества или информации. Примеры научной (НС) и технической (ТС) систем: Здесь: П à В1 = R (результат, явление, действие, эффект и т.п.) и R à В2 = ФЦ. à направление стрелки показывает направление действия (двусторонняя – взаимодействия);
- - -à - отсутствующая связь; ----- - безразличная связь. Научные системы В научной системе мы описываем фактически природную систему: Пример 1. При падении на металлическую пластинку пучка света, кванты света выбивают из неё электроны. НС: металлическая пластинка содержит свободные электроны, состоящие из магнитных частиц и фотонов, при столкновении фотона с электроном, электрон, преодолевая работу выхода электрона (энергию удержания электрона), выбивает его, и он вылетает из металла с определенной скоростью, как мячик от стенки, обладая кинетической энергией. На схеме, изображенной ниже, представлены схема природной системы (а) и её минимальной модели научной системы (б), в которую входят представления о потоке фотонов (hv) в виде частиц электрической материи, наличия свободных электронов (е) в металлической пластинке (В) и потока вылетающих из пластинки электронов, обладающих кинетической энергией (Т).
При этом часто модель научной системы совпадает с физической структурой природной системы:
Полученная физическая структура может быть использована для создания ряда технических систем, нужно лишь подобрать вместоподобрать вместо (*) нужный элемент с соответствующими свойствами.
В данном случае модель научной системы совпала с моделью природной системы. К развитию научных систем
Чтобы с позиций существующей парадигмы По объяснить факт Ф1, исследуемый объект О должен обладать свойством С, но, чтобы объяснить аномальный факт Ф2, объект О должен обладать свойством не-С.
Анализируя развитие химии, В.А. Кузнецов, выделил четыре этапа в развитии представлений об изучаемом объекте в химии: изучение состава вещества, как определяющего его свойства, затем его структуры, проявляющей разные свойства при одном и том же составе; поведения, т.е. динамики у молекул вещества, и, наконец, саморазвития, эволюции молекул [7]. Добавим к этому и проявление свойств веществ в зависимости от положения его составляющих в пространстве Аналогичные этапы проходят в своем развитии и технические системы.
Анализ развития научных систем показывает, что они развиваются через возникновение и разрешения научных противоречий в научных системах, в недрах которого возникает физическое противоречие (ФП) или физическая несовместимость (ФН) [1]. В целом эти виды противоречия относятся к диалектическому противоречию. Чтобы с позиций существующей парадигмы Пс объяснить факт Ф1, исследуемый объект О должен обладать свойством С, но, чтобы объяснить аномальный факт Ф2, объект О должен обладать свойством не-С.
После синтеза моно-системы начинается этап внедрения и интенсивного ее развития: подъем и разворачивание системы (поиск новых полезных функций (ПФ) и подсистем (ПС)) по линиям: моно-С à би-С à поли-С à сложные системы à … С целью повышения эффективности системы, её КПД. Система в итоге настолько усложняется, что начинают происходить сбои в системе (теории, гипотезе и т.д.) начинается процесс «поглощения» систем более низкого ранга системами более высокого ранга. Накопление количественных изменений приводит к качественным изменениям системы: В основе НП лежит физическое противоречие или физическая несовместимость (ФП или ФН): к одному и тому же объекту НП или его части предъявляются взаимопротивоположные физические требования. Здесь ФП в научных системах ничем не отличается от ФП в технических системах, т.к. они имеют дело с одними и теми же объектами материального мира. Уже из самого факта совпадения ФП следует, что основная часть арсенала средств ТРИЗ может быть перенесена в научное творчество. ФП доводит противоположные представления до крайности, указывая на причину их несоответствия, т.е. конкретные физические состояния (свойства) объекта, лежащие в основе представлений о нем. Научное познание отличается от обыденного своей системностью и последовательностью как в процессе поиска новых знаний, так и упорядоченностью всего найденного ранее. Нужно понимать, что наука, как система, не стоит на месте, и она подчиняется определенным закономерностям, которые можно познать и использовать для сознательного решения задач, считающихся творческими. Как было отмечено выше, в своем развитии наука проходит четыре этапа: поиск состава, поиск структуры, динамику и эволюцию изучаемого явления. Пример: АТОМЫ- МОЛЕКУЛЫ-ГЕМОГЛОБИН…- ДНК…
|
|||||||
Последнее изменение этой страницы: 2021-08-16; просмотров: 108; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.1.125 (0.012 с.) |