Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Принцип действия рефрактометра. Ход лучей рефрактометра в проходящем и отраженном свете.Содержание книги
Поиск на нашем сайте
Принцип действия рефрактометра состоит в измерении предельного угла преломления на границе исследуемой жидкости и стеклянной призмы с известным коэффициентом преломления. При первом способе - в проходящем свете (рис.а) - пучок световых лучей, испускаемых источником света S, с помощью зеркальца Z направляется на грань АВ призмы ABC. Преломившись на грани АВ, лучи проходят в призму ABC и достигают грани АС. Но так как эта грань сделана матовой и поэтому вызывает рассеяние света, лучи войдут в жидкость и достигнут грани ДЕ под различными углами. Очевидно, что наибольший возможный угол падения для лучей, падающих на грань ДЕ, равен 90°. Эти скользящие вдоль поверхности ДЕ. Лучи после преломления определяют границу распространения света, так как им соответствует предельный угол преломления. При втором способе -в отраженном свете (рис. б) - пучок световых лучей, испускаемых источником S, с помощью зеркальца Z направляется на грань DF. Так как грань DF также матовая, то лучи входят в призму DEF под разными углами. В этом случае лучам, вошедшим в призму DEF и достигшим грани DE, приходится переходить из среды оптически более плотной (стекло) в среду оптически менее плотную (жидкость). Лучи, падающие на поверхность DE под углом меньше предельного, пройдут в жидкость и в призму ЛВС. Лучи, у которых угол падения больше предельного, претерпят полное внутреннее отражение. Лучи, направление которых соответствует величине предельного угла, и определяют границу раздела света и тени. В случае бесцветных и слабоокрашенных жидкостей удобно пользоваться первым способом. При измерении показателя преломления интенсивно окрашенных жидкостей, сильно поглощающих свет, лучше пользоваться вторым способом.
Биологические мембраны, их структура и функции. Модели мембран. Мембраны представляют собой плоские или изогнутые слои толщиной до 9 нм, образованные молекулами белков, жиров (липидов) и углеводов. Мембраны – это клеточные структуры, повсеместно встречающиеся в живых клетках и регулирующие обмен между клеткой и внешней средой (клеточные или плазматические мембраны), либо между различными частями клетки (внутриклеточные мембраны). Основу мембраны образует двойной слой липидов. В этот слой встроены белковые молекулы, придающие специфические свойства различным участкам мембран, и тем самым, позволяющие последним принимать участие в разнообразных метаболитических процессах. Молекулы липидов упакованы в слой так, что гидрофобные части (жировые хвосты) этих молекул отделены от воды, в то время как гидрофильные части (полярные головки) погружены в неё. Двойной слой липидов как бы образует своеобразную двумерную жидкость с вязкостью, близкой к вязкости жидкого масла, поэтому молекулы липидов и белков легко перемещаются в плоскости слоя (латеральная диффузия). При некоторых условиях (понижение температуры) в мембранах могут происходить процессы, сопровождающиеся изменением ориентации полярных головок и (или) затвердеванием углеводных хвостов липидов, что приводит к изменению функциональных свойств мембраны.Наиболее распространенной является жидкомозаичная модель мембраны: в липидном слое плавают более или менее погруженные белки. 1-поверхностные белки, 2- полупогруженные белки, 3- полностью погруженные белки, 4 – белки, формирующие «ионный канал» 5
Мембраны выполняют две важнейшие функции: - матричную (являются матрицей, основой для удерживания белков, выполняющих различные функции); - барьерную (защищают клетку и отдельные ее части от проникновения нежелательных частиц).
Перенос частиц через мембраны. Уравнение Фика. Применение уравнения Фика к биологической мембране. Уравнение Нернста-Планка. Важной характеристикой мембран является их способность пропускать или не пропускать молекулы, атомы и ионы. Эти вопросы относятся к явлениям переноса. Рассмотрим наиболее важные для биологических мембран явления: перенос вещества (диффузию) и перенос заряда (электропроводность).В биофизике также используется термин «транспорт частиц» Основное уравнение диффузии имеет вид: Это уравнение Фика:I- плотность потока частиц,D- коэффицент диффузии D=___ __________, σ- среднее расстояние между молекулами, m-масса молекулы, n-концентрация молекул,с=m*n-массовая концентрация, τ - среднее время оседлой жизни молекулы
|
||||
Последнее изменение этой страницы: 2016-04-18; просмотров: 2687; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.176.213 (0.009 с.) |