Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Компьютерная томография (КТ)

Поиск

Компьютерная томография (КТ)новейший метод, дающий точные и детальные изображения малейших изменений плотности мозгового вещества. КТ соединила в себе последние достижения рентгеновской и вычислительной техники, отличаясь принципиальной новизной технических решений и математического обеспечения.
Главное отличие КТ от рентгенографии состоит в том, что рентген дает только один вид части тела. При помощи компьютерной томографии можно получить множество изображений одного и того же органа и таким образом построить внутренний поперечный срез, или "ломтик" этой части тела. Томографическое изображение — это результат точных измерений и вычислений показателей ослабления рентгеновского излучения, относящихся только к конкретному органу.
Таким образом, метод позволяет различать ткани, незначительно отличающиеся между собой по поглощающей способности. Измеренные излучение и степень его ослабления получают цифровое выражение. По совокупности измерений каждого слоя проводится компьютерный синтез томограммы. Завершающий этап — построение изображения исследуемого слоя на экране дисплея. Для проведения томографических исследований мозга используется прибор нейротомограф.
Помимо решения клинических задач (например, определения местоположения опухоли) с помощью КТ можно получить представление о распределении регионального мозгового кровотока. Благодаря этому КТ может быть использована для изучения обмена веществ и кровоснабжения мозга.
В ходе жизнедеятельности нейроны потребляют различные химические вещества, которые можно пометить радиоактивными изотопами (например, глюкозу). При активизации нервных клеток кровоснабжение соответствующего участка мозга возрастает, в результате в нем скапливаются меченые вещества и возрастает радиоактивность. Измеряя уровень радиоактивности различных участков мозга, можно сделать выводы об изменениях активности мозга при разных видах психической деятельности. Последние исследования показали, что определение максимально активизированных участков мозга может осуществляться с точностью до 1 мм.

Ядерно-магнитно-резонансная томография мозга. Компьютерная томография стала родоночальницей ряда других еще более совершенных методов исследования: томографии с использованием эффекта ядерного магнитного резонанса (ЯМР-томография), позитронной эмиссионной томографии (ПЭТ), функционального магнитного резонанса (ФМР). Эти методы относятся к наиболее перспективным способам неинвазивного совмещенного изучения структуры, метаболизма и кровотока мозга.
При ЯМР-томографии получение изображения основано на определении в мозговом веществе распределения плотности ядер водорода (протонов) и на регистрации некоторых их характеристик при помощи мощных электромагнитов, расположенных вокруг тела человека. Полученные посредством ЯМР-томографии изображения дают информацию об изучаемых структурах головного мозга не только анатомического, но и физикохимического характера. Помимо этого преимущество ядерно-магнитного резонанса заключается в отсутствии ионизирующего излучения; в возможности многоплоскостного исследования, осуществляемого исключительно электронными средствами; в большей разрешающей способности. Другими словами, с помощью этого метода можно получить четкие изображения "срезов" мозга в различных плоскостях.
Позитронно-Эмиссионная трансаксиальная Томография (ПЭТ-сканеры) сочетает возможности КТ и радиоизотопной диагностики. В ней используются ультракороткоживущие позитронизлучающие изотопы ("красители"), входящие в состав естественных метаболитов мозга, которые вводятся в организм человека через дыхательные пути или внутривенно. Активным участкам мозга нужен больший приток крови, поэтому в рабочих зонах мозга скапливается больше радиоактивного "красителя". Излучения этого "красителя" преобразуют в изображения на дисплее.
С помощью ПЭТ измеряют региональный мозговой кровоток и метаболизм глюкозы или кислорода в отдельных участках головного мозга. ПЭТ позволяет осуществлять прижизненное картирование на "срезах" мозга регионального обмена веществ и кровотока.
В настоящее время разрабатываются новые технологии для изучения и измерения происходящих в мозге процессов, основанные, в частности, на сочетании метода ЯМР с измерением мозгового метаболизма при помощи позитронной эмиссии. Эти технологии получили название метода функционального магнитного резонанса (ФМР) (см. Видео).

 

Нейрональная активность

Нейрон — нервная клетка, через которую передается информация в организме, представляет собой морфофункциональную единицу ЦНС человека и животных. При достижении порогового уровня возбуждения, поступающего в нейрон из разных источников, он генерирует разряд, называемый потенциалом действия. Как правило, нейрон должен получить много приходящих импульсов прежде, чем в нем возникнет ответный разряд. Все контакты нейрона (синапсы) делятся на два класса: возбудительные и тормозные. Активность первых увеличивает возможность разряда нейрона, активность вторых — снижает. По образному сравнению, ответ нейрона на активность всех его синапсов представляет собой результат своеобразного "химического голосования". Частота ответов нейрона зависит от того, как часто и с какой интенсивностью возбуждаются его синаптические контакты, но здесь есть свои ограничения. Генерация импульсов (спайков) делает нейрон недееспособным примерно на 0,001 с. Этот период называется рефрактерным, он нужен для восстановления ресурсов клетки. Период рефрактерности ограничивает частоту разрядов нейронов. Частота разрядов нейронов колеблется в широких пределах, по некоторым данным от 300 до 800 импульсов в секунду (см. Видео).

Варианты осциллограмм импульсной активности нейронных популяций, регистрируемых в различных корковых и подкорковых структурах (по Н.П. Бехтеревой с соавт., 1985). Вверху - отметки времени (100 мс). Латинские буквы справа - условные обозначения структур мозга человека

Регистрация ответов нейронов. Активность одиночного нейрона регистрируется с помощью так называемых микроэлектродов, кончик которых имеет от 0,1 до 1 микрона в диаметре. Специальные устройства позволяют вводить такие электроды в разные отделы головного мозга, в таком положении электроды можно зафиксировать и, будучи соединены с комплексом усилитель — осциллограф, они позволяют наблюдать электрические разряды нейрона.
С помощью микроэлектродов регистрируют активность отдельных нейронов, небольших ансамблей (групп) нейронов и множественных популяций (т.е. сравнительно больших групп нейронов). Количественная обработка записей импульсной активности нейронов представляет собой довольно сложную задачу особенно в тех случаях, когда нейрон генерирует множество разрядов и нужно выявить изменения этой динамики в зависимости от каких-либо факторов. С помощью ЭВМ и специального программного обеспечения оцениваются такие параметры, как частота импульсации, частота ритмических пачек или группирования импульсов, длительность межстимульных интервалов и др. Анализ функциональных характеристик активности нейронов в сопоставлении с поведенческими реакциями проводится на достаточно длительных отрезках времени от 25-30 с и выше. Активность нейронов регистрируют у животных в эксперименте, у человека в клинических условиях. Ценными объектами исследования функциональных свойств нейронов служат крупные и относительно доступные нейроны некоторых беспозвоночных. Многочисленные факты, касающиеся нейрональной организации поведения, были получены при изучении импульсной активности нейронов в экспериментах на кроликах, кошках и обезьянах.
Исследования активности нейронов головного мозга человека осуществляются в клинических условиях, когда пациентам с лечебными целями вводят в мозг специальные микроэлектроды. В ходе лечения для полноты клинической картины больные проходят психологическое тестирование, в процессе которого регистрируется активность нейронов. Исследование биоэлектрических процессов в клетках, сохраняющих все свои связи в мозге, позволяет сопоставлять особенности их активности, с результатами психологических проб, с одной стороны, а также с интегративными физиологическими показателями (ЭЭГ, ВП, ЭМГ и др.)
Последнее особенно важно, потому что одной из задач изучения работы мозга является нахождение такого метода, который позволил бы гармонически сочетать тончайший анализ в изучении деталей его работы с исследованием интегральных функций. Знание законов функционирования отдельных нейронов, конечно, совершенно необходимо, но это только одна сторона в изучении функционирования мозга, не вскрывающая, однако, законов работы мозга как целостной функциональной системы.

 

Методы воздействия на мозг

Выше были представлены методы, общая цель которых — регистрация физиологических проявлений и показателей функционирования головного мозга человека и животных. Наряду с этим исследователи всегда стремились проникнуть в механизмы мозга, оказывая на него прямое или косвенное воздействие и оценивая последствия этих воздействий. Для психофизиолога использование различных приемов стимуляции — прямая возможность моделирования поведения и психической деятельности в лабораторных условиях.

Сенсорная стимуляция. Самый простой способ воздействия на мозг — это использование естественных или близких к ним стимулов (зрительных, слуховых, обонятельных, тактильных и пр.). Манипулируя физическими параметрами стимула и его содержательными характеристиками, исследователь может моделировать разные стороны психической деятельности и поведения человека.
Диапазон применяемых стимулов весьма широк:
в сфере зрительного восприятия — от элементарных зрительных стимулов (вспышки, шахматные поля, решетки) до зрительно предъявляемых слов и предложений, с тонко дифференцируемой семантикой;
в сфере слухового восприятия — от неречевых стимулов (тонов, щелчков) до фонем, слов и предложений.
При изучении тактильной чувствительности применяется стимуляция: механическая и электрическими стимулами, не достигающими порога болевой чувствительности, при этом раздражение может наноситься на разные участки тела.
Реакции ЦНС на такое воздействие изучены хорошо и путем регистрации активности нейронов, и методом вызванных потенциалов. Помимо сказанного, в психофизиологии широко используются приемы ритмической стимуляции светом или звуком, вызывающие эффекты навязывания — воспроизведения в спектре ЭЭГ частот, соответствующих частоте действующего стимула (или кратных этой частоте).

Электрическая стимуляция мозга является плодотворным методом изучения функций его отдельных структур. Она осуществляется через введенные в мозг электроды в "острых" опытах на животных или во время хирургических операций на мозге у человека. Кроме того, возможна стимуляция и в условиях длительного наблюдения с помощью предварительно вживленных оперативным путем электродов. При хронически вживленных электродах можно изучать особый феномен электрической самостимуляции, когда животное с помощью какого-нибудь действия (нажатия на рычаг) замыкает электрическую цепь и таким образом регулирует силу раздражения собственного мозга. У человека электрическая стимуляция мозга применяется для изучения связи между психическими процессами и функциями и отделами мозга. Так, например, можно изучать физиологические основы речи, памяти, эмоций.
В лабораторных условиях используется метод микрополяризации, суть которого состоит в пропускании слабого постоянного тока через отдельные участки коры головного мозга. При этом электроды прикладываются к поверхности черепа в области стимуляции. Локальная микрополяризация не разрушает ткань мозга, а лишь оказывает влияние на сдвиги потенциала коры в стимулируемом участке, поэтому она может быть использована в психофизиологических исследованиях.
Наряду с электрической допустима стимуляция коры мозга человека слабым электромагнитным полем. Основу этого метода составляет принципиальная возможность изменения характеристик деятельности ЦНС под влиянием контролируемых магнитных полей. В этом случае также не оказывается разрушающего воздействия на клетки мозга. В то же время, по некоторым данным, воздействие электромагнитным полем ощутимо влияет на протекание психических процессов, следовательно, этот метод представляет интерес для психофизиологии.

Разрушение участков мозга. Повреждение или удаление части головного мозга для установления ее функций в обеспечении поведения — один из наиболее старых и распространенных методов изучения физиологических основ поведения. В чистом виде метод применяется в экспериментах с животными. Наряду с этим распространено психофизиологическое обследование людей, которым по медицинским показаниям было проведено удаление части мозга.

· Разрушающее вмешательство может осуществляться путем:

o перерезки отдельных путей или полного отделения структур (например, разделение полушарий путем рассечения межполушарной связки — мозолистого тела);

o разрушения структур при пропускании постоянного тока (электролитическое разрушение) или тока высокой частоты (термокоагуляция) через введенные в соответствующие участки мозга электроды;

o хирургического удаления ткани скальпелем или отсасыванием с помощью специального вакуумного насоса, выполняющего роль ловушки для отсасываемой ткани;

o химических разрушений с помощью специальных препаратов, истощающих запасы медиаторов или разрушающих нейроны;

o обратимого функционального разрушения, которое достигается за счет охлаждения, местной анестезии и других приемов.

Итак, в общем метод разрушения мозга включает в себя разрушение, удаление и рассечение ткани, истощение нейрохимических веществ, в первую очередь медиаторов, а также временное функциональное выключение отдельных областей головного мозга и оценку влияния вышеперечисленных эффектов на поведение животных.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-08; просмотров: 592; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.135.201 (0.008 с.)