Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Бесконечный мир размером с точкуСодержание книги
Поиск на нашем сайте
Александр Александрович Фридман родился в семье придворных музыкантов и детство провел в Зимнем дворце. В первую мировую войну он был на фронте в артиллерийских и воздухоплавательных частях. Не раз совершал опасные полеты, однажды едва не погиб при неудачном приземлении. Сочувствуя революционным идеям, он прятал в Зимнем дворце прокламации, одним из первых российских ученых признал Октябрьскую революцию. Много работал, преподавал. Увлекаясь наукой, мало внимания уделял личным удобствам. Летом 1925 года газеты сообщили, что директор Главной геофизической обсерватории профессор А. А. Фридман и аэронавт П. Ф. Федосеенко достигли на стратостате высоты в семь тысяч двести метров. Это был рекорд страны. Через два месяца Александр Александрович умер от брюшного тифа, случайно заразившись во время туристской поездки в Крым. Он умер, так и не узнав о том, что две его небольшие статьи в физическом журнале совершили настоящую революцию в науке о строении и происхождении Вселенной. В жестокой борьбе с религией наука создала картину бесконечной Вселенной, и вот теперь, основываясь на общей теории относительности, Фридман показал, что эта картина приближенная, и на самом деле мир может быть конечным. Но это не простой шар, где можно «дотронуться» до ограничивающей его стенки. Таких границ у мира нет. Конечный, но без границ. Чтобы понять, как это может быть, представим себе муравья, бегущего по проволочному кольцу. Его одномерный мир сразу бесконечен и ограничен. Ограничен, так как, двигаясь все время вперед, муравей обязательно попадет в то место, где он уже побывал ранее, а бесконечен потому, что, сколько ни бегай, никакого конца у кольца не обнаружишь. Одномерная Вселенная обладает краями лишь в мире с большим числом измерений — на плоскости или в пространстве. Для муравья на глобусе мир был бы двумерным, но опять-таки самозамыкающимся и вместе с тем бесконечным. И если бы муравей сам был двумерным и не мог «привстать» над поверхностью глобуса, то никаких границ своего мира он никогда не обнаружил. Двумерный мир полностью бы исчерпывал все доступное ему пространство. Сказочным двумерным «людям», живущим на поверхности шара, было бы очень трудно представить себе ограниченность их Вселенной. Для этого им пришлось бы иметь дело с воображаемым трехмерным миром, который они могли бы изучать лишь с помощью математических формул, — ведь в своей жизни они имеют дело только с длиной и шириной, высоты у них нет.
Точно так же наше трехмерное пространство может быть поверхностью четырехмерного шара. Оно тоже будет одновременно бесконечным и замкнутым. У него нет границ, но объем его конечен. Этот «недостаток» мы не будем ощущать, поскольку мы тоже не можем «привстать» над трехмерным миром. Конечно, реально никакого четырехмерного мира не существует, иначе четвертое измерение проявлялось бы в наших экспериментах. Это всего лишь вспомогательный математический образ. Однако это не мешает трехмерному миру обладать свойством кривизны и, подобно двумерной сфере, иметь конечный радиус. Вообще говоря, двумерные существа могли бы узнать о замкнутости своего мира, если бы решили измерить длины концентрических окружностей, описанных вокруг какой-либо точки. Вначале их очень бы удивило, что длины окружностей не равны 2πR. Чтобы объяснить этот факт, им пришлось бы допустить, что мир искривлен. А далее обнаружилось бы еще более поразительное свойство: длины окружностей сначала растут с увеличением их радиуса, а затем начинают убывать и, наконец, стягиваются в точку! И вот это убедило бы жителей в том, что их мир замкнут. Его размеры: длина светового луча-радиуса от точки испускания до точки, в которой концентрические окружности становятся бесконечно малыми. Если забыть о технических трудностях и рассуждать чисто теоретически, то аналогичный опыт можно проделать и в трехмерном пространстве — например, измерять площади концентрических сфер. Если мир искривлен и замкнут, они тоже сначала будут возрастать, а затем стянутся в точку. Заглядывая достаточно далеко в космос, мы увидим внутренность микромира. И опять мы встречаемся с тем же Великим кругом: из точки через космос в микромир! Два переходящих друг в друга полюса. Из формул, полученных Фридманом, следует, что радиус искривленного мира зависит от его массы. Чем она больше, тем больше радиус. Например, замкнутый мир с массой, равной массе солнца, имел бы радиус всего около трехсот метров. А вот размер замкнутого мира, масса которого приблизительно такая же, как у всей нашей Вселенной, составляет уже что-то около триллиона триллионов километров.
Если масса, а следовательно, и радиус мира очень велики, то его свойства практически не отличаются от свойств плоского мира. Его жители не будут даже и подозревать о замкнутости своего мира и о том, что, кроме этого, кажущегося им единственным и бесконечным мира, имеется еще множество других похожих миров. Такие замкнутые миры могут существовать независимо один от другого. Для их обитателей каждый из них выглядит, как вся Вселенная, а другие миры просто не видимы, словно их вообще не существует в природе. Один мир по отношению к другому представляет собой «схлопнувшееся», самозамкнувшееся пространство. Никакой связи между ними нет. Они не могут ни пересечься, ни соприкоснуться между собой, они просто принадлежат различным трехмерным пространствам. Можно сказать, что формулы Фридмана описывают Вселенную, состоящую из множества изолированных трехмерных миров, живущих в своем собственном ритме времени. Изнутри такой мир может быть большим или малым, а извне, по отношению ко всем остальным мирам, каждый из них является «абсолютным ничто», точкой, лишенной размеров, массы и всех других мыслимых физических свойств. Просто невероятно: целая Вселенная и в то же время «абсолютная точка» в пространстве и времени! Под одним углом зрения — бесконечность, под другим — нуль. Удивительные фокусы творят силы тяготения. Как не вспомнить стихотворение Корнея Чуковского, где «волки скушали друг друга», или известную шутку о том, как змея сама себя проглотила! Правда, здесь следует сделать важную оговорку. Вывод о полном схлопывании пространства получается, если не учитывать процессов рождения и поглощения элементарных частиц, которые разыгрываются на малых расстояниях. Когда «ворота» в замкнутый мир становятся очень узкими, нужно учитывать одновременно формулы Фридмана и квантовую механику, которая управляет физическими процессами в ультрамалом. К сожалению, такой единой теории (квантовой теории относительности) еще не создано. Сегодня существуют две отдельные науки: теория относительности Эйнштейна, с вытекающими из нее формулами Фридмана, и квантовая механика (подробнее мы познакомимся с ней в следующей главе). Их объединение — дело будущего, поэтому как происходит последний микроскопический этап схлопывания пространства и его «отпочковывание» от материнского мира, мы точно не знаем. Грубые оценки подсказывают, что когда соединяющая миры перемычка утончается до размеров геометрического кванта, пространство в ней становится неустойчивым, состоящим из отдельных «кусков», как битый лед в полынье. Такое дробленое пространство не может задержать переход энергии из одного мира в другой. Через оставшуюся тонюсенькую «пуповину» с размерами около 10-33 сантиметров, образно говоря, струится поток энергии, которая не позволяет ей сжаться до конца. Остается точечный «прокол» из одного мира в другой. Если новых миров образуется много, то Вселенная станет похожей на гроздь винограда со сросшимися ягодами — мирами. Посмотрим теперь, что произойдет, если попытаться перейти из одного полузамкнутого мира в другой. Они обладают различной пространственной кривизной и разными ритмами времени, поэтому можно ожидать, что на их стыке будет происходить масса любопытных явлений. Прежде всего выясним, какие физические условия способствуют «созреванию» и «отпочковыванию» новых миров-вселенных. Это подскажет нам, где искать их «ворота».
Черные дыры пространства
Если внутри тела нет противодействующих сил, то тяготение сожмет его в маленький шарик. Окружающие нас тела устойчивы благодаря отталкиванию электронных оболочек атомов и молекул. Массивные звезды, внутри которых гравитационные силы чрезвычайно велики, противостоят сжатию лишь благодаря расталкивающему действию излучений и мощных потоков вещества, порожденных ядерными реакциями в их недрах. Когда эти реакции ослабевают, внутреннее давление уже не может помешать стягивающим силам гравитационного притяжения и звезда начнет сжиматься. Уравнения общей теории относительности говорят, что для тел, масса которых больше нескольких солнечных, такое сжатие, однажды начавшись, уже не может остановиться. Масса тела будет неограниченно уплотняться все в меньшем и меньшем объеме. Произойдет так называемый «гравитационный коллапс», полное схлопывание пространства: тело сожмется до размера геометрического кванта и почти полностью «выпадет» из нашего мира, как будто его там и не было. Отсюда, казалось бы, следует, что с течением времени, по мере того как будет выгорать их ядерное «горючее», все массивные звезды одна за другой провалятся в «ямы» гравитационного коллапса, и наша Вселенная сильно «похудеет». В ней останутся лишь легкие тела, которые под действием тяготения постепенно сольются в более массивные объекты и тоже «вывалятся» из нашего пространства. И вот тут теория относительности преподнесла неожиданный сюрприз. Из ее формул следует, что коллапс космического тела можно наблюдать, лишь падая на него. Например, из ракеты, которая притягивается его гравитационным полем. Если же смотреть со стороны, скажем, с нашей Земли, то никакого сжатия в точку не произойдет. Как это может быть? Ведь если у космонавтов в ракете и у наблюдателя на космодроме достаточно точные приборы, они всегда видят на небе одно и то же! На Земле, где слабое гравитационное поле, это действительно так. Если же поле тяготения сильное, оно искривляет не только пространство, но и время — замедляет его. Все процессы становятся вялыми, лениво текущими. В падающей ракете, подобно тому как это происходит в быстро спускающемся лифте или в пикирующем самолете, тяготение ослабевает — возникает невесомость. Поэтому и течение времени, его ритм, практически не изменяется. На него ничто не действует. Другое дело — земной наблюдатель. Он видит процессы, искаженные гравитационным полем. А у сжимающегося тела оно очень сильное — ведь, как следует уже из закона Ньютона, сила притяжения тела обратно пропорциональна квадрату расстояния до него. Поэтому уменьшение размеров тела сопровождается быстрым нарастанием сил тяготения. И вот наступает момент, когда притяжение становится настолько мощным, что уже даже свет не может его преодолеть. Он буксует, как автомобиль на скользкой дороге, его скорость снижается до нуля, и сжимающееся тело — звезда или целая Галактика — превращается в «черную дыру» — объект, который поглощает все, что на него падает, но сам ничего, абсолютно ничего не испускает. Такой объект становится невидимкой, черным пятном на небе!
Существование таких необычных космических объектов — черных дыр — предсказал вместе со своим ассистентом незадолго до второй мировой войны американский физик Роберт Оппенгеймер. Но еще раньше, в конце XVIII века, идею «всепоглощающих тел» высказал знаменитый французский ученый Пьер Симон Лаплас. Он первым подсчитал, что тело, имеющее плотность Земли и размеры с ее орбиту, будет удерживать световые лучи. Конечно, никаких эффектов, связанных с изменением ритма времени, Лаплас не знал. Чтобы нагляднее представить себе черную дыру, стоит перечитать те страницы романа И. А. Ефремова «Туманность Андромеды», где описывается зловещая черная планета. Ее гравитационное поле — ловушка для неосторожного звездолета. Оказавшись в ее окрестностях, он уже не в силах разорвать мощные цепи притяжения, и поверхность планеты навеки становится его могилой. А если масса планеты или звезды так велика, что вообще ничто материальное не может от них оторваться, даже нейтрино и радиоволны, вот тогда это уже черная дыра! Объекты с такими необычными свойствами предсказаны теоретиками, как говорят, открыты на кончике пера. Обнаружить в космосе эти не испускающие ни частиц, ни электромагнитных волн невидимки чрезвычайно трудно. Почувствовать их присутствие можно лишь по крепкой паутине тяготения, создаваемой ими в окружающем пространстве. Черная дыра поджидает свою добычу, как паук в темноте. Но иногда она может себя выдать. Например, когда в ее гравитационную паутину попадает облако межзвездного газа или пыли. Такое облако крайне разрежено, но зато объем его огромен — миллиарды тонн мельчайших частичек вещества. Ненасытная черная дыра будет собирать их, подобно мощному пылесосу. Облако закрутится в гигантскую воронку вокруг дыры и, постепенно уплотняясь, в результате бесчисленных столкновений частиц раскалится до сотен миллиардов градусов. (Масштабы космические!) При этом оно превратится в плазму и станет светиться, и не просто светом, а превратится в мощный источник рентгеновских лучей — в космическую рентгеновскую трубку. Если же черная дыра расположена вблизи звезды, она, как вампир, будет высасывать вещество соседки. И снова возникнут мощные рентгеновские импульсы.
У астрофизиков есть серьезные подозрения, что именно такой процесс происходит в созвездии Лебедя, на расстоянии нескольких десятков тысяч световых лет от Земли. Там обнаружен рентгеновский источник с большой массой и очень маленького размера. Есть еще несколько кандидатов в черные дыры, а некоторые ученые убеждены в том, что в центре нашей собственной Галактики также должна быть одна или даже несколько массивных черных дыр. Однако все подозреваемые объекты очень далеки от нас, изучать их чрезвычайно трудно, и полной уверенности в том, что это действительно черные дыры, пока еще нет. Астрофизикам придется еще потрудиться, чтобы поставить все точки над i.
Падение в тартарары
Итак, для стороннего наблюдателя время в окрестностях черной дыры останавливается, и коллапсирующее тело навеки застывает в виде черного пятна. Никаких изменений с ним больше не происходит. Все процессы там замирают, и спрятанный внутри черной дыры мир никогда не оторвется от нашего. Полного схлопывания пространства и сжатия коллапсирующего тела до размеров геометрического кванта мы никогда не увидим. Если к черной дыре был направлен звездолет, то наблюдатели на контролирующих станциях зафиксируют постепенное уменьшение его скорости, и, наконец, он повиснет в пространстве, как мушка в густом глицерине. Так и останется навеки, дальше за ним можно не следить. А вот перед экипажем летящего звездолета развернутся удивительные картины. Сначала ничего особенного, просто скорость корабля будет быстро нарастать, как у падающего на землю камня. Если затратить достаточно много горючего, еще можно затормозить и повернуть обратно. Правда, вернувшись на Землю, молодой космонавт встретит своего близнеца-брата глубоким стариком, а если задержится в окрестностях черной дыры чуть дольше, то встретит на Земле своих далеких потомков — ведь по сравнению с земным его время текло медленнее. Хороший способ путешествия в будущее! Надо только некоторое время полетать вблизи черной дыры. Она, как машина времени, перенесет путешественника в любую, сколь угодно отдаленную эпоху. Жаль только, что нельзя вернуться обратно в наше время, — машина работает в одну сторону! Если экипаж звездолета отклонит мысль о возвращении и решит продолжать полет к черной дыре, то критическую красную черту, откуда уже нельзя вернуться обратно, притягиваемый черной дырой звездолет пролетит с предельной, световой скоростью. Свойства пространства и времени здесь таковы, что они как бы перепутываются, становятся неразличимыми между собой. Просто четыре равноправных измерения, и все! Если хотите, можно сказать, что пространство перестало существовать, а можно утверждать, что на границе черной дыры нет времени. А дальше произойдет уже нечто совсем сверхъестественное, такое, для чего не хватает ни слов, ни фантазии. Что-то напоминающее превращение времени в расстояние, а расстояния — в трехмерное время. Пространство и время как бы меняются местами. Наших обычных пространственно-временных представлений недостаточно для наглядного осознания того, что там происходит. У писателя С. А. Снегова есть «космический» роман о путешествии землян к рамирам — таинственным и могущественным существам, жителям центра Галактики. «— Кто видит океан в штиль, может ли представить, каким он становится в бурю? — пытается передать свои впечатления один из героев романа о происходящих там превращениях пространства и времени. — Вихри… Время здесь рыхлое, оно разрывается… прошлое не смыкается с будущим через настоящее… время больное, рак времени… Время, подобно ленте Мёбиуса, течет, выворачиваясь в пространство. Замкнутые петли… Вневременные области, куда нельзя попасть из нашего времени… Впрочем, и это, наверное, лишь блеклое отражение тех коловращений, которые претерпевает время вблизи черных дыр». Конечно, для экипажа звездного корабля это не пройдет бесследно. Те части звездолета и тел самих космонавтов, которые ближе к центру тяготения, будут испытывать действие больших сил. В земных условиях различие тяготения, действующего на наши ноги и голову, не велико (хотя тоже заметно — попробуйте повиснуть на перекладине турника вниз головой, и вскоре почувствуете прилив крови!). В окрестностях черной дыры, где силы притяжения огромны, любое физическое тело будет растянуто и многократно разорвано на мельчайшие части. Сжимаясь в точку, коллапсирующее тело превратится в россыпь геометрических квантов и каких-то не известных еще нам структурных единиц материи. Ни одно тело не может пройти сквозь черные ворота в дочерний мир, не испытав таких катастрофических превращений в каждой своей точке, которые трудно даже представить. Вот уж когда действительно верна пословица: «Пролезть труднее, чем верблюду в игольное ушко!» Чем массивнее тело, тем большую черную дыру образует оно в пространстве. Например, черная дыра, в которую могла бы провалиться туманность Андромеды, в сотни раз превосходит размеры нашей Солнечной системы. Однако пройти через такой гигантский черный провал в дочерний мир не проще, чем через микроскопическую черную дырочку. Радиус черной дыры для звезды с массой, равной трем массам Солнца, составляет всего лишь около десятка километров. По астрономическим масштабам — это уже практически точка, тем не менее до размеров геометрических квантов, когда происходит почти полное схлопывание пространства, еще далеко. Что же касается тел, масса которых меньше полутора-двух масс Солнца, то их гравитационные поля недостаточны для того, чтобы «смять» внутренние силы, препятствующие сжатию. Поэтому самые маленькие черные дыры, которые могут возникнуть при гравитационном коллапсе, имеют поперечник в несколько километров. Но это означает, что мы, кажется, зашли в тупик: с одной стороны, теория предсказывает существование почти замкнутых миров, а с другой — эта же теория приводит к выводу о том, что ни одно космическое тело не может преодолеть барьер черной дыры и так сжаться, чтобы мог возникнуть такой мир. «Стенка» застывшего времени крепче любой брони! Ее нет для падающего в дыру звездолета, но для нас это не имеет значения, поскольку никаких репортажей с борта этого звездолета мы не получим, они так и останутся в гравитационной паутине черной дыры.
Распухающая Вселенная
Горловина, связывающая нас с дочерним миром, действительно не может стать уже нескольких километров. Сомневаться в правильности расчетов нет оснований. Однако наш мир не всегда был таким, как сейчас. В далеком прошлом его свойства были совершенно иными, другими были и условия для образования черных дыр. Астрономия — древнейшая земная наука. Необходимые для ночной ориентировки зачатки астрономических знаний были известны, по-видимому, уже первобытным охотникам. Наблюдая периодические, повторяющиеся из года в год движения Солнца, Луны и других небесных светил, люди, естественно, пришли к мысли о том, что Земля — центр Вселенной. Широкое распространение библейских мифов о сотворении мира еще более укрепило эти представления. Вселенная считалась конечной как во времени — от сотворения мира, так и в пространстве — ограниченной небесным сводом с закрепленными на нем звездами. И хотя постепенно накапливались наблюдения, которые заставляли сомневаться в справедливости этой картины, новые идеи пробивали себе дорогу с большим трудом. Мысль Коперника о том, что в представлении людей об устройстве мира надо поменять местами Солнце и Землю, казалась просто издевательством над здравым смыслом. Насколько велика сила привычки и предубеждений, видно, например, из того, как Галилео Галилей, ученый, едва не попавший на костер инквизиции за приверженность идеям Коперника, в молодости был их ярым противником. Воспитанный по канонам церкви, он впервые услышал о них на лекциях в университете и искренне считал их очевидной глупостью. «Я спрашивал об этом многих из числа бывших на лекциях, — вспоминал он впоследствии, — и увидел, что эти лекции служили неистощимым предметом для насмешек». Такой же нелепостью теория Коперника показалась и современнику Галилея, послушнику одного из монастырей в Неаполе Джордано Бруно. Он родился всего лишь через пять лет после смерти Коперника и был на шестнадцать лет моложе Галилея. Начав с критики коперниковских трудов, Джордано Бруно вскоре стал их сторонником. В многочисленных публичных диспутах он защищал идею о вечном существовании пространственно бесконечной Вселенной. Через несколько лет после сожжения Джордано Бруно на Площади Цветов в Риме Галилео Галилей с помощью изобретенного им телескопа смог доказать, что светящиеся облака Млечного Пути состоят из мириадов звезд. Как и предсказал Джордано Бруно, мир оказался необычайно большим и разнообразным. В последующие столетия стараниями астрономов, математиков и физиков получено огромное количество новых сведений о космосе. Картина мира стала несравненно более полной и совершенной, чем во времена Коперника и его первых последователей. Тем не менее в своей основе представления о строении мира, как целого, все эти столетия оставались, по существу, неизменными. Бесконечное пространство, заполненное сгустками кипящей материи, — звезды, шарики планет вокруг них, разреженный межзвездный газ и пыль. Такая картина бесконечной и вечной Вселенной господствовала в науке вплоть до середины XX века. Уточнялись и изменялись детали, иногда целые фрагменты, но убеждение в том, что окружающий мир не имеет конца и края не только в пространстве, но и во времени, сохранялось неизменным. Считалось, что существенные изменения происходят лишь в отдельных участках Вселенной. Планеты, звезды, жизнь — все имеет свой срок существования. Однако, погибнув в одном месте, они возникают и проходят все стадии эволюции в другом. В целом же в своих глобальных свойствах мир остается неизменным. То, что эта картина не верна (точнее, применима лишь в сравнительно небольшой области пространства и времени, недалеко от нашей планеты и вблизи времени, в котором мы живем), ученые поняли совсем недавно. И главную роль в этом сыграли уже упоминавшиеся две небольшие статьи А. А. Фридмана. В них говорилось не только о том, что мир может быть искривленным и замкнутым, но и о том, что его размеры не остаются постоянными, а изменяются с течением времени. Анализ уравнений теории относительности, выполненный Фридманом, обнаружил в их решениях «особую точку», некоторый момент времени, в который радиус мира равен нулю, а плотность содержащегося в нем вещества — бесконечности. Исчезающее малая точка бесконечной массы! Из уравнений следовало, что эта точка мгновенно, толчком, превращается в крохотный шарик, который продолжает далее быстро расти. Получается так, что до некоторого стартового момента времени не было ни времени, ни пространства. Затем, в силу каких-то причин (точнее теория сказать не может), Вселенная стала «разбухать», извергаться из точки, равномерно расширяясь во все стороны, как выдуваемый мыльный пузырь. Идея рождения и распухания мира настолько резко противоречила всем принятым в науке представлениям, что большинству ученых она показалась просто фантастической. На нее смотрели, как на некую чисто математическую модель, описывающую нереализующиися в природе случай, — ведь, как известно, уравнения имеют иногда лишние решения, которые приходится отбрасывать, исходя из условий задачи. Даже Эйнштейн посчитал сначала расчеты Фридмана ошибочными, «подозрительными», как осторожно выразился он сам. Зато церковь встретила новую теорию с восторгом. Еще бы, физика доказывает начало мира и своим авторитетом подтверждает библейские тексты! Конечно, претензии церкви на научное обоснование библейских мифов не имеют никаких оснований. С не меньшим правом о подтверждении их пророчеств могли бы говорить, например, и безвестные авторы древнеиндийской языческой Книги Гимнов («Ригведы»), которые на много тысячелетий раньше Библии рассуждали о цепи следующих друг за другом рождений и смертей Вселенной. За свою долгую историю люди придумали много сказочных (религиозных) и несказочных (научных) объяснений природы. В мифах разных народов можно найти космогонические картины на любой вкус: в одних вещается о рождении и грядущей гибели мира, в других он бесконечен. И каждый из этих сценариев имеет много вариантов, выдумать можно многое. При желании любому астрономическому открытию можно сопоставить отдаленно напоминающий его миф. Основное различие между научным и ненаучным объяснениями природы состоит в том, что научные выводы, даже самые удивительные и диковинные, — это не просто утверждения, в которые нужно верить, как в религиозные догмы, все они могут быть проверены и доказаны опытом. А наблюдения приносили все новые и новые подтверждения «фантастической» теории Фридмана. Самое убедительное нашел английский астроном Эдвин Хаббл.
Невероятно, но факт!
Через четыре года после смерти Фридмана Хаббл установил, что все звезды и галактики удаляются, разбегаются друг от друга, как и должно быть, если окружающее их пространство раздвигается во всех своих точках, разбухает, подобно тесту в квашне. И как это предсказывали формулы Фридмана, скорость разбегания космических объектов тем больше, чем дальше они удалены друг от друга. Самые близкие звезды удаляются от нас каждую секунду на десятки и сотни километров. А самые далекие космические объекты, находящиеся на краю видимой нами части Вселенной, убегают со скоростями, близкими к скорости света. Благодаря распуханию пространства растягивается и наше тело, но на ничтожно малую величину, приблизительно на 10-11 сантиметров за всю нашу жизнь. За это время Земля и Солнце успевают разойтись примерно на десять микрон — тоже очень маленькая величина. Эффект разбегания важен для межгалактических расстояний и интервалов времени в сотни миллионов и миллиарды лет. Еще одно убедительное доказательство теории расширяющейся Вселенной связано с именем американского физика русского происхождения Г. А. Гамова. Он выдвинул гипотезу о том, что рождение Вселенной представляло собой гигантский взрыв пространства и какой-то неизвестной нам праматерии, из которой в условиях огромных температур и давлений «сварилось» затем атомное вещество нашего мира. За неимением более подходящей наглядной картины это явление часто называют «Большим взрывом», или «Биг Бэнгом», если использовать соответствующий звучный английский термин. Гипотеза Гамова позволила разработать теорию «Огненного шара», в котором происходил синтез атомных ядер, и рассчитать концентрацию водорода, гелия и других химических элементов во Вселенной. Результаты вычислений хорошо согласуются с данными о составе Земли, лунных пород и метеоритов и с результатами изучения спектров испускаемого звездами света, которые зависят от того, какие атомные ядра «горят» на той или иной звезде. И самое главное, американские инженеры с помощью радиотелескопов обнаружили предсказанное Гамовым рассеянное по всему пространству остаточное тепловое излучение Большого взрыва. В пользу теории Фридмана говорило также множество косвенных данных. И шаг за шагом поражающая воображение, кажущаяся пришедшей из научно-фантастических романов картина взрывающейся и быстро расширяющейся Вселенной завоевала всеобщее признание. Безусловно, это одна из тех идей, которые знаменитый датский физик Нильс Бор относил к разряду «сумасшедших». Александр Александрович Фридман открыл самое грандиозное явление природы из всех, которые мы можем сегодня себе представить. Рождение и расширение Вселенной — что может быть грандиознее?! По научному значению и влиянию на умы людей теорию Фридмана можно сравнить лишь с теориями Коперника и Джордано Бруно.
Черные дыры-малютки
Теперь мы в состоянии понять, как образуются такие дыры. Это могло произойти в катаклизме «первородного взрыва». В колоссальных перепадах давлений и плотностей могли возникать области очень малых размеров и такой большой массы, что вокруг них происходило практически полное свертывание пространства и времени. Исходная масса каждой такой самозамкнувшейся области компенсируется, «съедается», отрицательной энергией гравитационного притяжения ее внутренних частиц. Это похоже на то, как из слияния тяжелых элементарных частиц образуется легкая. Для внешнего пространства масса замкнутого мира оказывается почти равной нулю. Если не учитывать квантовых эффектов, она была бы точно равна нулю, и замкнувшийся мир полностью бы исчез из нашего пространства. В процессе «Биг Бэнга» могли образоваться черные дыры самых различных масс и размеров — от очень больших до субъядерных, как у элементарных частиц. Микроскопические черные дыры-малютки — это ворота, через которые спрятавшийся внутри полузамкнутый мир связан с внешним пространством, с его ритмом времени. Чем уже ворота, тем меньшей массой во внешнем пространстве обладает находящийся за ними полузамкнутый мир. Несмотря на малость их размеров, дыры-малютки — очень тяжелые объекты. Например, черная дыра с радиусом 10-13 сантиметров, то есть такой же величины, как большинство элементарных частиц, имеет массу приблизительно в миллиард тонн. Это масса астероида с радиусом около километра или горы средней величины на поверхности Земли. Черная дырочка с размерами электрона весит миллион тонн. Не видимые глазом точки с весом целой горы! Среди известных нам физических тел самые плотные — атомные ядра. Их вещество спрессовано в десятки миллиардов раз сильнее, чем в стальном шарике. А плотность микроскопической дыры-малютки еще в 1040 раз больше. Космические масштабы в микромире. И наконец, самое удивительное: оказывается, черные дыры-малютки неустойчивы и теряют свою массу путем… испарения! Это может показаться просто невероятным — ведь черная дыра потому и называется черной, что она ничего не испускает. Тем не менее расчет показывает, что это так. Уравнения теории относительности, на которых основывались первоначальные выводы о свойствах черных дыр, не учитывают квантовых эффектов, а для объектов с размерами, как у элементарных частиц, это уже незаконно. Мы уже знаем, что протон на очень короткое время может превратиться в протон и пи-мезон. Подобным же образом в пустом пространстве может родиться пара — позитрон плюс электрон или даже пара более тяжелых частиц, родиться и тут же исчезнуть, аннигилировать в ничто. Квантовая механика допускает такие процессы. И вот может случиться так, что родившиеся частицы не успеют еще аннигилировать, а одну из них уже поглотит прожорливая черная дыра. Тогда второй компонент пары уже не имеет партнера для аннигиляции и излучится, полетит в пространство прочь от дыры. Такие события повторяются одно за другим, поэтому вокруг черной дыры происходит как бы «вскипание» вакуума, а внешне это выглядит, как постепенное ее испарение. Похоже на вскипание капли воды на горячей сковородке. Масса черной дыры уменьшается, соответственно уменьшается и ее радиус — дыра стягивается в точку. Ворота в полузамкнутый мир стремятся сомкнуться! Температура горящей спички около семисот градусов. А черная дыра — малютка с радиусом, как у протона, — ведет себя, подобно телу, нагретому до температуры в сотню миллионов градусов, примерно впятеро горячее, чем в центре Солнца. Мощность ее излучения равна мощности полутора Братских гидроэлектростанций. И такая мощность извергается из объема, который в сотни раз меньше атомного ядра! Не видимая глазом пылинка, которая способна осветить и отопить огромный город. Концентрация энергии просто чудовищная! По мере того как размеры черной дыры уменьшаются, «квантовое кипение» вакуума вокруг нее становится все более интенсивным. Начинают рождаться тяжелые частицы, температура черной дыры, а следовательно, и мощность ее излучения возрастают. Для черных микродыр с размерами, как у элементарных частиц, такой процесс нарастающего излучения продолжается один-два десятка миллиардов лет. Завершается он взрывом, мощность которого эквивалентна одновременному взрыву почти триллиона атомных бомб, подобных той, что была сброшена американцами на Хиросиму. Двери во внутренний мир закрываются с грохотом! Таков результат вычислений английского физика Хоукинга, выполненных в предположении, что в последние моменты ее жизни вокруг перегретой черной дыры образуются и излучаются частицы с массой в несколько нуклонных масс. Если возможно излучение более тяжелых частиц (а почему нет?), взрыв будет еще более мощным — в сотни тысяч и даже миллионы раз. Эффекты действительно космические. Зная скорость расширения пространства (ее измерил еще Хаббл), можно вычислить время, которое потребовалось для того, чтобы Вселенная «распухла» до ее современных размеров. Оказывается, для этого нужно пятнадцать — двадцать миллиардов лет. Наш мир достиг возраста, когда очень маленькие черные дырочки уже успели распасться, и теперь пришло время взрываться дырам с адронными размерами. Поиск излучений и взрывов черных микродыр вели с помощью ракет и спутников. Были обнаружены излучения, которые можно приписать черным дырам. К сожалению, это очень неоднозначно, этим излучениям можно найти и другие, более привычные объяснения. Неумолимая «бритва Оккама» — «не вводить сущностей сверх необходимого» — заставляет искать дальнейшие доказательства. А если все же допустить, что замеченное излучение принадлежит в основном черным дырам, то их число в окружающем пространстве очень велико. Можно сказать, что Вселенная буквально нафарширована крошечными черными дырами. Невольно приходит мысль: нельзя ли как-то поймать одну такую дырочку и использовать ее в качестве компактного и практически неисчерпаемого источника энергии? Например, поместить внутрь сферы с двойными жароупорными стенками, между которыми циркулирует и превращается в пар вода или какой-либо легкоплавкий металл. Их энергию нетрудно перевести в электрическую. Интересно было бы создать проект такой космической электростанции для снабжения горючим космических ракет и спутников. Кто знает, возможно, в будущем ловля маленьких черных дыр станет важным занят
|
|||||||||
Последнее изменение этой страницы: 2021-07-18; просмотров: 83; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.234.68 (0.023 с.) |