Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Как заглянуть внутрь протона?Содержание книги
Поиск на нашем сайте
Величина самых мелких пылинок, которые мы еще можем разглядеть невооруженным взглядом, составляет около пятидесяти микрон (напомним, микрон — тысячная часть миллиметра). Это примерно половина толщины человеческого волоса. Те, у кого особо острое зрение, способны рассмотреть предметы и в полтора-два раза более мелкие. Но это уже предел. Далее нужно использовать увеличительные стекла и микроскоп. С их помощью можно разглядеть детали размером вплоть до сотых долей микрона. Наглядно представить себе, что означают такие размеры, лучше путем сравнений. Микробы имеют величину от нескольких десятых микрона до одного микрона. Приблизительно таков же диаметр капелек жира в коровьем молоке. Частички табачного дыма в десять раз меньше, самые мелкие из них около сотой части микрона. Объекты, меньшие сотых долей микрона, в оптический микроскоп увидеть нельзя, даже если снабдить его очень большими и сильными линзами. Дело в том, что такую величину имеет длина волны видимого света. Более мелкие предметы световые волны огибают, и мы их не видим, подобно тому как радиолокатор с большой длиной радиоволны не замечает перископ подводной лодки. Наше видение предметов основано на том, что они поглощают или рассеивают падающую на них световую волну — вообще как-то ее изменяют. Это изменение и фиксирует наш глаз. Если же волна огибает препятствие, как вода в ручье мелкий камешек, мы его просто не замечаем. Чтобы заглянуть внутрь объектов, меньших нескольких сотых микрона, нужно использовать электронный микроскоп, в котором световой луч заменен пучком быстрых, или, как говорят физики, «жестких», электронов, а наш глаз — светочувствительным экраном или фотопластинкой. У электронного микроскопа увеличение приблизительно в тысячу раз больше, чем у оптического, и с его помощью можно увидеть (а точнее, сфотографировать) детали с размерами вплоть до десяти тысячных долей микрона (10-8 сантиметров). Таким путем удается рассмотреть даже отдельные крупные атомы. На фотографиях они похожи на густо намотанные окружности толстой паутины или на кружевную салфеточку, если рассматривать ее издали. Подобно световым частицам-фотонам, электроны обладают волновыми свойствами. Они тоже огибают мелкие предметы, и это как бы размазывает картину, делает ее расплывчатой и нечеткой. Образно говоря, электронный пучок при своем движении как бы немного дрожит, траектории частиц несколько размазываются, и, чтобы сфокусировать изображение, приходится использовать очень быстрые электроны, инерция движения которых способна превозмочь волновое дрожание пучка. (Поэтому такие электроны и называют жесткими.) Почему электрон обладает волновыми свойствами — это сложный вопрос. Ответ на него дает квантовая механика. Позже нам еще предстоит большой разговор об этом, не будем забегать вперед. С точки зрения обычной школьной физики, волновые свойства электрона объяснить и понять довольно трудно, но в науке всегда приходится что-то принимать на веру, прячась за спасительной формулой: это следует из опыта. Иначе мы рискуем утонуть в деталях. Рассказывают, что однажды французский математик Жан Д'Аламбер, устав от долгих попыток объяснить доказательство теоремы одному из своих учеников, воскликнул в отчаянии: — Честное слово, эта теорема верна! Реакция ученика была мгновенной: — Месье, этого вполне достаточно! Вы — человек чести, я — тоже. Ваши уверения — самое лучшее доказательство! Вот и мы давайте последуем примеру этих благородных людей и поверим пока на слово квантовой механике, тем более что опыт хорошо подтверждает ее выводы. Итак, электронный микроскоп позволяет добраться до границы атомов. Если увеличить энергию электронов, сделать их еще жестче, тогда можно «просветить» и более мелкие объекты — атомные ядра и их «детали» — протоны и нейтроны. Для этого нужны ускорители частиц. Это громоздкие и чрезвычайно сложные инженерные сооружения, создание которых сегодня под силу только крупным странам. Тем не менее, несмотря на их сложность, основной принцип действия ускорителей понять не трудно. По своему устройству они похожи на кольцевое метро, только вместо поездов по кругу бегут сгустки частиц. Удерживает их на круге магнитное поле, а в промежутках, на каждой станции, на них действует «подстегивающее» электрическое напряжение. Поезда метро на станциях останавливаются, а сгустки частиц, наоборот, получают здесь дополнительный толчок электрическим «хлыстом». Чем дольше крутится частица, тем больше ее энергия. Ускоритель можно уподобить праще, которую воины когда-то применяли для метания камней: заложенный в нее камень (в данном случае сгусток частиц) раскручивается и с силой выбрасывается наружу. Если убрать магнитное поле, ускоряемые частицы будут двигаться по прямой, это так называемый линейный ускоритель. Его размеры очень велики, так как частица проходит такой ускоритель только один раз, без возврата. И чтобы разогнаться до большой энергии, она должна пробежать большое расстояние с многими промежуточными станциями «подстегивания». Академик В. И. Векслер, один из лучших советских специалистов по ускорителям, сравнивал циклический ускоритель с круглым манежем для лошадей, а линейный — с прямым треком ипподрома, вдоль которого лошадь, подгоняемая ударами шпор всадника, летит как стрела. Понятно, что ускорять можно не только электроны, но и все другие заряженные частицы — например протоны, — и даже тяжелые ядра атомов. Однако легкие и очень маленькие электроны особенно удобны для «просвечивания» других, более крупных частиц. Ускоритель частиц изобрели незадолго до второй мировой войны. Самый крупный в Европе создавался тогда в Ленинграде, в Радиевом институте. Уже в то время физикам было ясно, что эти машины — ключи к нижним этажам микромира. Строительство ускорителя потребовало создания мощных вакуумных насосов — ведь пучок частиц должен разгоняться в условиях почти полного вакуума, так как иначе столкновения с молекулами газа рассеят его задолго до конца ускорения. Потребовались особо сильные электромагниты, дистанционное управление, специальная защита, поскольку работающий ускоритель — источник смертельно опасных излучений. Целый комплекс проблем! Война помешала завершить строительство, но накопленный опыт помог в создании значительно большего ускорителя в Дубне. Здесь, на болотистом островке, отгороженном руслами трех рек — Дубны, Сестры и Волги, — в конце сороковых годов был получен пучок протонов с рекордной по тем временам энергией. Ранее такие высокоэнергетические частицы можно было встретить лишь в космических лучах. В газетах так и сообщалось: группе ученых (некоторые из них принимали участие еще в строительстве ленинградской машины) присуждена Сталинская премия за создание генератора космических лучей. По сравнению с его высокоэнергетическими младшими братьями, построенными и строящимися в Советском Союзе, в США, в странах Западной Европы, первый дубненский ускоритель выглядит весьма скромно. Даже у его соседа — знаменитого дубненского фазотрона, построенного на несколько лет позднее, — энергия почти в пятнадцать раз больше. Однако «зрение» первого дубненского ускорителя было в свое время самым острым, почти в сто тысяч раз острее, чем у электронных микроскопов, и с его помощью физики впервые смогли «прощупать» расположение протонов внутри атомного ядра. Но внутреннее строение самого протона этот ускоритель еще не чувствовал. Протон для него оставался точкой. Заглянуть внутрь этой частицы удалось лишь пять лет спустя, когда на Тихоокеанском побережье США, вблизи города Сан-Франциско, был построен мощный ускоритель электронов.
Партонная «икра»
Электронное «просвечивание» показало, что протон действительно не точка, а довольно крупный объект с радиусом, всего лишь в несколько раз меньшим радиуса легких атомных ядер. Это что-то около триллионной доли миллиметра — 10-13 сантиметров. Вещество в протоне, как и в атоме, сконцентрировано, главным образом, в его центральной части. Однако если атом состоит в основном из пустоты, то в протоне нет резкой границы между оболочкой и центральным остовом — керном. Атом своим строением напоминает Солнечную систему, а протон больше похож на планету с массивным центральным ядром и окружающей ее протяженной атмосферой. Радиус протонного керна всего лишь в несколько раз меньше размеров его мезонной «шубы». Можно было ожидать, что аналогичное строение имеет и нейтрон. Простая модель, в которой нуклон жонглирует мячиком-мезоном, подсказывает, что окраинные области протона и нейтрона отличаются лишь знаком заряда: у протона там «танцуют» мезоны π0 и π+, у нейтрона — π0 и π-. Опыт неожиданно показал совсем другое. Радиус облака электрических зарядов в нейтроне получился равным нулю! Иными словами, внутри этой частицы есть что-то такое, что полностью нейтрализует заряд мезонного облака, или… или не верна модель жонглирования, а это, в свою очередь, означает, что наши представления о строении элементарных частиц несправедливы в самой своей основе, и физикам придется начинать все заново. Было от чего прийти в волнение! Результат опытов с нейтроном долго оставался загадкой. Для его объяснения предлагалось множество гипотез, физики разных стран съезжались на специальные конференции, чтобы сообща попытаться понять, в чем тут дело. Но «парадокс нейтрона» не поддавался их усилиям. Разгадать загадку пытались и мы в Дубне. Непонятно, почему происходит нейтрализация заряженных «облаков» в нейтроне, но это, по существу, следующий вопрос, прежде нужно убедиться в том, что такие облака там существуют. Это можно сделать, если поместить нейтрон в сильное электрическое поле, тогда его положительные заряды сместятся в одну сторону, а отрицательные — в другую. Нейтрон растянется, из шарика превратится в гантель, что скажется на его взаимодействиях с атомными ядрами. Идея простая, но заметить растяжение нейтрона на опыте так и не удалось, этому мешали побочные эффекты. Разгадка пришла после открытия тяжелых мезонов ро и омега. Как это уже не раз случалось в истории науки, природа в разнообразии своих законов оказалась куда более изобретательнее физиков. Выяснилось (кто бы мог подумать!), что при определенных условиях пи-мезоны могут как бы «слипаться», образуя новые короткоживущие частицы. Это как раз и есть омега- и ро-мезоны. Из таких быстро слипающихся и снова разваливающихся частиц-капель и состоит мезонная «шуба» нуклона. Одиночные мезоны встречаются в ней редко. В протоне условия благоприятствуют образованию заряженных мезонных «капель», в нейтроне — нейтральных, поэтому электроны и не чувствуют мезонной «шубы» нейтрона. Для них она прозрачна. Чтобы ее обнаружить, нейтрон надо «прощупывать» пучком жестких протонов, которые чувствуют мезонную «мякоть» нейтрона. Во всех взаимодействиях нейтрон ведет себя как частица с размазанной в пространстве массой и равным нулю радиусом распределения электрических зарядов. Мы видим, что просвечивание электронами принесло много новых сведений о строении нуклонов, однако не внесло упрощения в картину, наоборот, она еще более усложнилась. Если вспомнить аналогию с жонглером, то можно было бы сказать, что он играет сразу с несколькими шариками, которые иногда слипаются в пары и тройки. Положение прояснилось лишь после того, как энергию электронов подняли настолько, что они стали чувствовать в нуклоне детали, которые вдесятеро меньше его диаметра. Если бы протон представлял собой единую монолитную систему, состоящую из перекрывающихся частей, которые по своим размерам не уступают целому, то, согласно третьему закону Ньютона, величина импульса столкнувшегося с ним и отскочившего электрона давала бы сведения о скорости движения протона как целого. Это как в радиолокации — при слежении за летящим самолетом отраженный луч приносит сведения о его размерах и скорости. Оператор на экране видит четкую светящуюся точку. В опыте с рассеянием очень жестких электронов получилось иначе — вместо четкой точки на экранах приборов было видно размытое пятно. Правда, в опыте использовались не светящиеся экраны, как это делал когда-то Резерфорд при просвечивании атома, а более сложные регистрирующие приборы, но все равно после обработки с помощью ЭВМ их показания в виде точек и пятен можно вывести на экран телевизора. И они получались не такими, как это должно быть для монолитного нуклона. В чем тут дело, первым понял американский физик Р. Фейнман. Его имя уже не раз упоминалось на страницах нашей книги. Среди коллег он известен своим веселым остроумием, и это часто помогает ему находить ответ на самые трудные вопросы, которые преподносит физикам эксперимент. Во время второй мировой войны он участвовал в расчетах американской атомной бомбы. Работы велись в строгом секрете, и в конце рабочего дня офицер безопасности запирал все материалы в стальной сейф с цифровым кодом. Фейнман каким-то образом сумел разгадать код, и однажды, открыв утром сейф, дежурный офицер поднял тревогу — в сейфе со сверхсекретными чертежами и расчетами лежал клочок бумаги, на котором было написано: «Угадай, кто?» От строгого наказания Фейнмана спасла лишь его репутация выдающегося ученого. Так вот, анализируя результаты новых опытов по рассеянию электронов, Фейнман использовал аналогию с радиолокацией. Когда самолет или ракета разваливаются на куски, к оператору следящей радиолокационной станции приходит отражение от каждого из них — целый набор отраженных лучей, и вместо яркой точки он видит на экране размазанное световое пятно. В своей статье Фейнман привел пример с роем пчел: близорукий человек видит его как единый темный ком, а наблюдатель с острым зрением различает множество снующих насекомых. Таким образом, сделал вывод ученый, нуклон тоже является роем каких-то очень мелких частичек. Из них состоит его керн и мезонная «шуба». Эти частицы стали называть партонами — от английского слова «парт», то есть часть. Теперь можно спросить: так все-таки что же такое нуклон — орешек-керн, одетый в толстую мезонную «шубу», или же комочек мелкозернистой партонной «икры»? Этот вопрос напоминает индийскую притчу о том, как слепцы пытались рассказать, что такое слон. Слепец, который находился возле его ноги, сказал, что слон похож на большое дерево. Второй ощупал хобот и заявил, что слон — толстая кожаная кишка. Третий же, потрогав хвост, стал уверять, что слон — это всего-навсего лишь маленькая змейка. Каждый из них был прав, но только частично: истинная картина, подобно мозаике, получается сложением всех их рассказов. Объекты микромира, их противоречивую сущность тоже нельзя отобразить одной картиной, они слишком сложны для этого. Наглядное представление о нуклоне — это набор многих отдельных картинок. При крупномасштабном рассмотрении нуклон предстает перед нами как сгусток накладывающихся и проникающих друг в друга мезонов и более тяжелых элементарных частиц. При большем увеличении становится заметной мелкозернистая структура этих частиц, и нуклон выглядит как шарик, наполненный партонной «икрой». В целом картина приобрела более привычные нам черты: нуклон состоит из маленьких частичек-партонов, подобно тому как атомное ядро складывается из меньших, чем оно само, нуклонов. Большее состоит из меньшего, части-кирпичики не похожи на слепленное из них целое. Ступеньки структурной лестницы выправились и снова пошли вниз. Но на этом история с партонами не закончилась. Их открытию очень обрадовались теоретики, которые занимались классификацией в быстро разраставшемся зоопарке элементарных частиц. Они уже давно догадывались о существовании таких частиц, только называли их по-своему — кварками.
«Три кварка для мистера Марка!»
Выше уже говорилось, что элементарные частицы нельзя разделить на более и менее элементарные, все они равноправны. Однако их можно распределить по семействам, связанным между собой правилами родства. Так же, как в настоящем зоопарке, где звери распределены по родам, семействам, отрядам. Для элементарных частиц роль родственных связей играют правила симметрии: частицы укладываются в симметричные по своим свойствам группы. Сложные семейства, насчитывающие десятки частиц-членов, расщепляются на более простые подсемейства, те — на еще более простые. В целом получается таблица, которую можно назвать периодической системой элементарных частиц. Самое простое семейство в ней, лежащее в основе всех других, занято частицей, имеющей три состояния. (Вспомним снова аналогию с электрической лампочкой, которая меняет свой цвет! Но вот что смущает: правила симметрии приводят к выводу, что заряд этой частицы (назовем ее пока частицей «икс») меньше, чем у электрона. В одном состоянии (лампочка горит белым светом) он составляет треть заряда электрона, в двух других (синий и красный цвет) — две трети. Однако дробных зарядов никто никогда не встречал. С давних времен хорошо известно, что электрический заряд всех тел всегда — целое кратное заряда электрона (нуль тоже целое число!). Настораживают и другие характеристики икс-частицы. По одним свойствам ее следует считать нуклоном, по другим — мезоном. В некоторых отношениях она должна вести себя, как типичная странная частица, в других же аспектах она похожа на обычные, нестранные частицы. Все у нее не так, как у «нормальных частиц»! В древних мифах упоминаются кентавр, получеловек-полулошадь и сфинкс — существо с лицом человека и с туловищем льва. Подобным фантастическим гибридом в глазах физиков выглядит и частица икс. Вообразите на минутку, что вы видите сфинкса, мирно пасущегося в стаде коров, или большого черного морского конька с зонтиком среди гуляющей по морскому берегу публики. Можно представить, как бы вы удивились! Вот так же встретило предсказанную теоретиками икс-частицу и большинство физиков — с недоверием и подозрительностью, а некоторые так просто с юмором, как очередной «загиб» досужих на выдумки теоретиков. С другой стороны, если сложить три икс-частицы вместе, то в зависимости от того, какие состояния «иксов» выбраны для сложения, эта триада приобретает свойства протона, нейтрона или одной из более тяжелых частиц гиперонов. Невольно приходит мысль, что удивительные «иксы» как раз и являются теми первичными блоками-кирпичиками, из которых можно составить все другие частицы подобно тому, как из протонов и нейтронов складываются ядра всех химических элементов в таблице Менделеева. Первыми эту идею выдвинули два американских теоретика — Мюррей Гелл-Ман и Джордж Цвейг. Они же придумали и название икс-частице — кварк. О происхождении этого странного термина среди физиков в ходу две легенды. Согласно одной, он появился как шутка — в немецком языке слово «кварк» означает одновременно: «творог», «протоплазма» и… «чепуха». Поначалу придумавшие кварк теоретики с юмором относились к своему изобретению. Другая легенда утверждает, что это слово взято из романа Джойса «Поминки по Финнегану». В бредовом сне герой этого романа видит летящие за его кораблем чайки, которые человеческими голосами выкрикивают бессмысленную фразу: «Три кварка для мистера Марка!» Вот этим коротким гортанным словом из «области бреда» и воспользовались теоретики. Когда кварки замелькали на страницах теоретических статей, многие ученые считали их всего лишь неким курьезом, временными строительными лесами на пути к более совершенной теории. Однако не успели физики оглянуться, как оказалось, что с помощью кварков очень просто и наглядно объясняются самые различные экспериментальные факты, а теоретические вычисления сильно упрощаются. Без кварков стало просто невозможно обойтись, так же, как, например, в химии нельзя обойтись без атомов и молекул. В теории Гелл-Мана и Цвейга нуклон, гипероны и другие похожие на них тяжелые частицы состоят из трех кварков. Мезоны состоят из «слипшихся» кварка и антикварка. Последние — такие же «сердитые» родственники, как электрон и позитрон. Их электрические заряды отличаются знаком, а столкнувшись, они могут в пух и прах разнести друг друга — аннигилировать. Но это происходит не всегда. Иногда бывает так, что вместо взаимоуничтожения частица и античастица, как борцы на арене цирка, начинают кружиться одна вокруг другой. Образуется короткоживущая система, где частицы погружены в общую энергетическую «ванну». С помощью «кваркового конструктора» можно построить всю таблицу элементарных частиц — иногда простым сложением, а иногда придавая дополнительное вращение «частям» уже построенных частиц. Исключение составляют упрямые лептоны, их никак не удается породнить с кварками. Почему это так, мы выясним позднее, а пока будем иметь дело лишь с адронами. Их намного больше, чем лептонов. (Если кто-то забыл, чем отличаются адроны от лептонов, полезно вернуться на несколько страниц назад и еще раз прогуляться по «зоопарку» частиц.) Подобно тому как это было когда-то с периодическим законом Менделеева для химических элементов, кварковая систематика позволила вычислить параметры и предсказать поведение новых частиц, которые затем были открыты на опыте. Но сами кварки по-прежнему оставались чисто теоретическими объектами. О них много говорили и писали, но они упорно не хотели проявлять себя в опытах. Вот тут-то и вышли на арену феймановские партоны. Оказалось, что внутри протона и нейтрона ровно по три партонных икринки и параметры их в точности такие, как у кварков. В частности, их заряд равен 1/3 и 2/3 электронного. Точнее, один тип партонов имеет заряд -1/3, два других +2/3. Три типа партонов — три состояния кварка. Стало ясно, что партоны и кварки — это одни и те же частицы. Теоретики и экспериментаторы пришли к ним с разных сторон. Казалось бы, наконец-то удалось свести концы с концами. Однако счастье никогда не бывает полным, и в любой бочке меда есть своя ложечка дегтя. Физиков очень беспокоило то, что в свободном виде, так сказать, наяву, кварки никто не наблюдал, хотя с тех пор как их изобрели, прошло уже достаточно много времени. Почему кварки встречаются лишь связанными в пары и тройки? Получается так, что, подобно подпоручику Киже в известном рассказе Юрия Тынянова, кварки «присутствуют, но фигуры не имеют»! В чем же здесь дело? Может, мы в чем-то здорово ошибаемся и кварковый этаж природы устроен совсем не так, как мы его себе представляем?
Погоня за невидимками
Поиск свободных кварков стал одной из основных забот физиков. Не выяснив, в чем тут дело, нельзя было двигаться дальше, и на решение этой задачи была брошена вся мощь современной экспериментальной физики. Самый характерный признак кварка — его дробный заряд, меньший заряда электрона. Вот за этот признак и ухватились охотники за невидимками. Когда заряженная частица проходит сквозь вещество, она своим электрическим полем срывает часть электронов с оболочек атомов — ионизует их. Вдоль пути частицы выстраивается цепочка таких «ободранных» атомов. Физики называют их ионами. Чем больше заряд частицы, тем большее число ионов отмечает ее путь. Поэтому ионизационные следы кварков в веществе должны заметно отличаться от следов других частиц. Они менее плотные. Расчет показывает, что кварк с зарядом 2/3 образует в два с половиной раза меньше ионов, чем частица, обладающая единичным зарядом. А кварк с зарядом 1/3 — почти в десять раз меньше. Вот по таким «рыхлым», разреженным следам и можно надеяться отыскать кварк среди других элементарных частиц. Плотность следа зависит также от массы частицы и ее скорости. Быстрая, легкая частица, подобно глиссеру на воде, должна оставлять лишь слабый, едва видимый след, а медленная и тяжелая, как ледокол во льдах, будет образовывать широкую полосу повреждений. Однако физики давно уже научились измерять массы и скорости частиц и в «чистом виде» выделять только ту часть ионизации, которая связана с различием зарядов частиц. Конечно, сама по себе цепочка ионов вдоль пути частицы остается невидимой, подобно тому как невидимо изображение на непроявленной фотопленке. Чтобы увидеть ионизационные следы частиц, нужны особые условия или специальная обработка материала. Для этого можно воспользоваться, например, камерой Вильсона в магнитном поле, с помощью которой полвека назад был открыт позитрон. Цепочка заряженных ионов выполняет в ней роль центров конденсации, вокруг которых «проявляется» след частицы в виде полоски тумана. Магнитное поле изгибает ее. Радиус изгиба зависит от величины электрического заряда частицы, а направление изгиба — от его знака. Вместо пересыщенного пара, который применяется в камере Вильсона, можно использовать перегретую жидкость с температурой немного выше точки кипения. Она мгновенно вскипает вдоль траектории ионизующей частицы и отмечает ее гирляндой мелких пузырьков — как в стакане с нарзаном. Чем сильнее заряжена частица, тем больше образуется таких пузырьков. След частицы можно сделать видимым также с помощью фотопластинок, подобных тем, что применяются в обычном фотоателье, только фотослой у них нужно приготовить по специальному рецепту — он должен быть чрезвычайно высокочувствительным, чтобы реагировать даже на очень слабые ионизационные повреждения. Химически ионы значительно более активны, чем неповрежденные атомы, поэтому проявитель сильнее всего действует на те участки фотослоя, которые повреждены частицами (или светом), и в результате получается отчетливая фотография следов. Есть и другие способы «проявить» ионизационные следы частиц. Однако ни в одном из таких экспериментов дробных электрических зарядов обнаружить не удалось. Их искали среди потоков частиц, рождающихся в ядерных реакциях на ускорителях, искали в космических лучах… И… ничего, никаких следов кварков! Одно время физики думали, что «вышелушить» кварки из протонов и нейтронов мешает их очень большая масса. Плавая в энергетической «ванне» внутри нуклона, они становятся гораздо легче, и, чтобы превратиться в свободные тяжелые кварки, им нужно здорово «поправиться». Этого нельзя сделать без усиленного энергетического «питания», поэтому выбить кварк из нуклона, вдоволь «накормив» его энергией, может лишь сильно разогнанная частица. А поскольку кварки в опытах не рождаются, это означает, что мощности современных ускорителей еще недостаточно, и поймать кварк, возможно, удастся только в далеком будущем. Вывод очень пессимистический. Правда, есть еще один источник высокоэнергетических частиц-снарядов — космические лучи. Там встречаются частицы с энергией в тысячи и даже миллионы раз большей, чем дают ускорители. Казалось бы, уж они-то должны разбивать нуклонные «орешки» на кварки! Тем более обескураживающей была для физиков неудача всех попыток обнаружить эти частички. Может быть, причина в том, что высокоэнергетических «снарядов» в космических лучах крайне мало и редкие случаи рождения кварков просто ускользают от внимания наблюдателей?
Кварки вокруг нас
Космические частицы очень высокой энергии действительно весьма редки, но зато выбитые ими кварки должны постепенно накапливаться в веществе нашей планеты — ведь, однажды образовавшись, кварк уже не может исчезнуть. Он не способен распасться на обычные частицы, так как заряд-то у него дробный, а дробь, как ни крути, нельзя превратить в целое. Если кварк поглотится протоном или нейтроном окружающего вещества, то при этом снова образуется объект с дробным электрическим зарядом — еще один тип кварков, только несколько более тяжелых. Кварковое вещество неуничтожимо, точнее, почти неуничтожимо, так как исчезнуть и превратиться в обычные частицы кварк все же может, когда он столкнется с антикварком и произойдет их аннигиляция, взаимоуничтожение. Однако вероятность таких столкновений для рассеянных по веществу кварков и антикварков чрезвычайно мала. А если к тому же учесть, что космические частицы бомбардируют нашу планету уже многие миллиарды лет, то за это время в земном веществе должно накопиться огромное количество кварков. Вот тут-то их и можно попытаться обнаружить. Есть еще одна причина, почему окружающее нас вещество должно быть «нафаршировано» крупинками кварков. В следующей главе мы увидим, что когда-то, очень-очень давно, Вселенная была в раскаленном состоянии. Все частицы тогда двигались с большой скоростью и имели огромную энергию, кварки были свободными, несвязанными частицами. Потом Вселенная несколько остыла. Почему это произошло, опять-таки будет объясняться в следующей главе, сейчас нам важно лишь знать, что настало время, когда кварки стали слипаться в адроны. Сталкиваясь, они образовывали общую энергетическую «ванну», сразу теряли в ней вес, а излишнюю массу «выплескивали» в виде излучений, подобно тому как толстый человек расплескивает воду, садясь в наполненную до краев ванну. Кварки сливались в адроны, а разбить их обратно у окружающих частиц энергии уже не хватало. В раскаленной Вселенной они носились, как разъяренные пчелы вокруг разбитого улья, в остывшей они стали похожи на суетливых, но осторожных муравьев, снующих вокруг своей кучи из рыжих иголок. Так «сварилось» вещество нашего мира. Но отдельные кварки при этом могли, так сказать, замешкаться и оказаться в окружении одних адронов, не имея партнеров для слияния. Это похоже на известную детскую игру: ее участники бегают по площадке, не обращая внимания друг на друга, вдруг звучит сигнал, и каждый торопится объединиться с соседом в пару. А кто не успел — водит. Заблудившиеся кварки-неудачники должны сохраниться до наших дней. Они до сих пор странствуют по миру в поисках своих «суженых». Расчеты, выполненные академиком Я. Б. Зельдовичем и его коллегами, показали, что в каждой пылинке окружающего нас вещества с диаметром в тысячную долю миллиметра должно быть примерно по одному заблудившемуся кварку. К этому следует добавить еще кварки, рожденные космическими лучами. Концентрация получается очень высокой. Тем более что это в среднем, а на самом деле кварки могут распределяться очень неравномерно, и в некоторых веществах их концентрация может быть еще выше. Все это выглядело весьма оптимистично, и многие лаборатории мира с энтузиазмом взялись за ловлю свободных кварков. Началась буквально кварковая лихорадка. Кварки искали не только специалисты-физики, но и химики, инженеры и даже биологи. Многим казалось, что с помощью современной техники обнаружить кварки не сложнее, чем отыскать крупинку золота в куче золотоносного песка. Был момент, когда казалось, что кварковая жар-птица уже в наших руках. Солидный американский физический журнал, а вслед за ним научно-популярные журналы и газеты объявили об открытии дробных зарядов. Однако «допрос с пристрастием» показал, что этот результат ненадежен и, возможно, обусловлен какими-то неучтенными особенностями эксперимента. Сегодня, пожалуй, наиболее точный метод поиска кварков основан на том, что, блуждая в веществе, кварки с отрицательным электрическим зарядом будут прилипать к положительно заряженным атомным ядрам. Образуются «кварковые атомы», которые по своим свойствам несколько отличаются от обычных атомов. Этим можно воспользоваться для концентрирования и выделения «кваркового вещества». Метод напоминает старый студенческий анекдот о том, как поймать льва в пустыне Сахара: надо растворить весь сахар в воде, тогда лев выпадет в осадок! Были исследованы железные метеориты, различные минералы, морская вода, выбросы вулканов во время их извержений, лунный грунт и прочее. Были исследованы все экзотические уголки, до которых могли только добраться фантазия и руки физиков. Измерения были настолько точными, что если бы в десяти кубометрах воды (по объему это хотя и не целая Сахара, но весьма приличная цистерна!) содержались всего один-два кварка, то они были бы обнаружены. Точность фантастическая! Если бы такие возможности имели золотоискатели, они смогли бы легко обнаружить крупинку золота в песчаной горе размером с десяток Эверестов и даже больше. И тем не менее все опыты оказались неудачными — кварков не обнаружили. Это можно было бы понять, если допустить, что кварки не просто очень тяжелые, а чрезвычайно тяжелые частицы. Дело в том, что когда частицы «выкристаллизовывались» из первичного аморфного вещества юной Вселенной, тяжелым частицам это давалось труднее, первыми и в большем количестве «выпадали в осадок» легкие частички. (Мы опять несколько забегаем вперед, об этом пойдет речь в следующей главе, но что делать, многие разделы физики переплетаются и их нельзя расположить «голова в голову»!) Поэтому чем больше масса кварка, тем меньше их блуждает сегодня вокруг нас. В своих расчетах теоретики предполагали, что кварк в пять — десять раз тяжелее протона, а для того чтобы объяснить отрицательный результат опытов, необходимо допустить, что масса кварка в миллиарды миллиардов раз больше. Кажется невероятным, чтобы часть протона, его долька, весила в миллиарды миллиардов раз больше его самого, — гора Казбек внутри горошины! Сегодня большинство физиков считает, что свободных, изолированных кварков в природе вообще нет. Кварки наглухо «заперты» внутри элементарных частиц, и никакими силами выбить их оттуда нельзя. Советский физик Я. Б. Зельдович одним из первых пришел к выводу, что в мире действует какой-то закон, который строго-настрого запрещает вылет кварков из адронов. Но из чего же тогда сделаны «стенки» адрона, если ни один снаряд, даже самый высокоэнергетический, не может их разрушить?
Пленники резиновой «тюрьмы»
Опыты по зондированию нуклона доказали, что в центре элементарной частицы кварки почти не связаны взаимодействием и ведут себя как плавающие в воздухе надувные шарики. Если же кварки пытаются разойтись, то сразу же возникают стягивающие их силы. Другими словами, как самостоятельные частицы, кварки и антикварки существуют лишь в глубине элементарных частиц, а на их периферии кварки могут находиться лишь в форме связанных сгустков — например, в виде пи-мезонов. Интересно получается: в атомах и в их ядрах сильнее всего связаны внутренние наиболее плотные слои, а вот кварковый каркас элементарных частиц, наоборот, наиболее жестко и крепко сцементирован на периферии. Недаром физики шутят о «центральной свободе» и «периферическом рабстве» кварков, а английский термин «кварковый конфайнмент» — буквально: «пленение кварков», «кварковая тюрьма» — встречается на страницах самых серьезных научных статей! Хотя ни один снаряд не может расколоть адронные «орешки», было бы неверным считать, что их стенки тверды, как танковая броня или железобетонный колпак дота. Сквозь эти стенки глубоко внутрь протона и нейтрона проникают пучки зондирующих электронов, их пронизывают насквозь фотоны и нейтрино. И в то же время их не может преодолеть ни один внутренний кварк. С первого взгляда неясно даже, как связать такие, казалось бы, несовместимые, взаимоисключающие особенности кваркового строения частиц. Тем не менее их можно понять с помощью весьма простой модели. Представим себе, что между кварками натянуто что-то вроде резиновых нитей. Когда кварки близко один от другого, нити провисают, и кварки чувствуют себя свободными — резинки не мешают их движению. Но как только кварки расходятся, нити натягиваются, и тем сильнее, чем больше расстояние между их концами. Кварки сразу оказываются спутанными «по рукам и ногам». |
||
| Поделиться: |
Познавательные статьи:
Последнее изменение этой страницы: 2021-07-18; просмотров: 101; Нарушение авторского права страницы; Мы поможем в написании вашей работы!
infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.143.218.115 (0.02 с.)