Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Разработка двоичного счётчика↑ ⇐ ПредыдущаяСтр 5 из 5 Содержание книги Поиск на нашем сайте
Разработать двоичный счётчик на микросхемах К555ИЕ7 (SN74LS193) – группа 1; К555ИЕ5 (SN74LS93) – группа 2; К555ИЕ18 (SN74LS163) – группа 3; К555ИЕ17 (SN74LS169) – группа 4 с коэффициентом счёта, равным n. Моделирование работы счётчика. Пример разработки двоичного счётчика
Необходимо реализовать двоичный счётчик на микросхемах К555ИЕ7 (SN74LS193) с коэффициентом счёта Ксч = 31 ∙ 3 = 93. Микросхема К555ИЕ7 (SN74LS193) представляет собой четырёхразрядный двоичный счётчик (рисунок 2.13).
а) б)
Рисунок 2.13 – Условное обозначение микросхем К555ИЕ7 (а) и SN74LS193 (б)
Выводы 15, 1, 10, 9 предназначены для предварительной установки счётчика при нулевом уровне сигнала на входе 11. Высокий уровень напряжения на входе 11 (+5 В) исключает предварительную установку. Вход 5 используется для прямого счёта, а вход 4 – для обратного. Сброс счётчика осуществляется при подачи высокого уровня напряжения на вход 14. Для увеличения разрядности счётчика используется выход 12 (≥15). Одна микросхема может иметь максимальный коэффициент счёта, равный 16. Две последовательно соединённые микросхемы дадут коэффициент счёта, равный 256. Так как заданный коэффициент счёта Ксч = 31 ∙ 3 = 93, то для построения счетчика-делителя с заданным коэффициентом счёта достаточно двух микросхем. Определим двоичный код заданного коэффициента счёта:
=128 ∙ 0 + 64 ∙ 1 + 32 ∙ 0 + 16 ∙ 1 + 8 ∙ 1 + 4 ∙ 1 + 2 ∙ 0 + 1 ∙ 1.
При поступлении 93-го импульса на вход микросхемы DD 1 на выходах Q i микросхем DD 1 и DD 2 установятся следующие логические сигналы:
DD 2: Q 3 Q 2 Q l Q O; DD 1: Q 3 Q 2 Q l Q O. 0101 1101
Так как сброс счётчиков в исходное (нулевое) состояние осуществляется сигналом высокого уровня, подаваемым на входы 14, то, объединив с помощью логического элемента 8И-НЕ (DD 3) выходы Qi счетчиков, на которых появятся логические единицы при поступлении на вход 93-го импульса, подадим результирующий сигнал с выхода DD 3, предварительно проинвертировав его с помощью логического элемента 3И-НЕ DD 4 на входы 14 микросхем DD 1 и DD 2. В качестве DD 3 можно использовать микросхему К555ЛА2 (74LS30D), в которой содержится один логический элемент 8И-НЕ; в качестве DD 4 – микросхему К555ЛА4 (74LS10D), в которой содержится два логических элемента 3И-НЕ. Модель разработанной схемы счётчика в среде Multisim приведена на рисунке 2.14. Данная схема осуществляет подсчёт 93-х импульсов и отображение их двоичного кода. С приходом 93-го импульса выходы счётчиков обнуляются и счёт возобновляется.
Рисунок 2.14 – Модель двоичного счётчика с коэффициентом счёта Ксч = 93 Разработка двоично-десятичного счётчика Разработать двоично-десятичный счётчик на микросхемах К555ИЕ6 (SN74LS192) – группа 1; К555ИЕ9 (SN74LS160) – группа 2; К555ИЕ2 (SN74LS90) – группа 3; К555ИЕ20 (SN74LS390) – группа 4 с коэффициентом счёта, равным n. Пример разработки двоично-десятичного счётчика
Необходимо реализовать двоично-десятичный счётчик на микросхемах К555ИЕ6 (SN74LS1932) с коэффициентом счёта Ксч = 31 ∙ 3 = 93. Микросхема К555ИЕ6 (SN74LS192) по назначению выводов аналогична микросхеме К555ИЕ7 (SN74LS193) (см. рисунок 2.13). Однако подсчёт числа импульсов осуществляет в двоично-десятичном коде. Одна микросхема может иметь максимальный коэффициент счёта, равный 10. Две последовательно соединённые микросхемы дадут коэффициент счёта, равный 100. Так как заданный коэффициент счёта Ксч = 31 ∙ 3 = 93, то для построения счетчика-делителя с заданным коэффициентом счёта достаточно двух микросхем. Определим двоично-десятичный код заданного коэффициента счёта. При этом каждый из разрядов десятичного числа представляется двоичным кодом из четырёх разрядов:
= 8 ∙ 1 + 4 ∙ 0 + 2 ∙ 0 + 1 ∙ 1;
= 8 ∙ 0 + 4 ∙ 0 + 2 ∙ 1 + 1 ∙ 1.
При поступлении 93-го импульса на вход микросхемы DD 1 на выходах Q i микросхем DD 1 и DD 2 установятся следующие логические сигналы:
DD 2: Q 3 Q 2 Q l Q O; DD 1: Q 3 Q 2 Q l Q O. 1001 0011
Так как сброс счётчиков в исходное (нулевое) состояние осуществляется сигналом высокого уровня, подаваемым на входы 14, то, объединив с помощью логического элемента 8И-НЕ (DD 3) выходы Q i счетчиков, на которых появятся логические единицы при поступлении на вход 93-го импульса, подадим результирующий сигнал с выхода DD 3, предварительно проинвертировав его с помощью логического элемента 3И-НЕ DD 4 на входы 14 микросхем DD 1 и DD 2. В качестве DD 3 можно использовать микросхему К555ЛА2 (74LS30D), в которой содержится один логический элемент 8И-НЕ; в качестве DD 4 –микросхему К555ЛА4 (74LS10D), в которой содержится два логических элемента 3И-НЕ. Модель разработанной схемы счётчика в среде Multisim приведена на рисунке 2.15. Данная схема осуществляет подсчёт 93-х импульсов и отображение их двоично-десятичного кода. С приходом 93-го импульса выходы счётчиков обнуляются и счёт возобновляется. Для отображения двоично-десятичного кода воспользуемся семисегментными индикаторами DCD_HEX. Рисунок 2.15 – Модель двоично-десятичного счётчика с коэффициентом счёта Ксч = 93
Дешифратор [2] Дешифра́тор (декодер), от англ. Decoder – комбинационная схема, преобразующая n -разрядный двоичный, троичный или k -й код в -й одноединичный код, где k – основание системы счисления. Логический сигнал активен на том выходе, порядковый номер которого соответствует двоичному, троичному или k-му коду. Дешифраторы являются устройствами, выполняющими двоичные, троичные логические функции (операции). Наиболее широко распространены дешифраторы преобразующий двоичный код в десятичный код, воспринимаемый человеком. Двоичный дешифратор работает по следующему принципу. Пусть дешифратор имеет N входов, на которые подаётся двоичное слово . Тогда на выходах формируется код разрядности, меньшей или равной , где разряд, номер которого равен численному представлению входного слова, становится активным (принимает значение логической единицы, логического нуля или переводится в высокоимпедансное состояние – отключается, что зависит от конкретной реализации дешифратора), все остальные разряды неактивны. Очевидно, что максимально возможная разрядность выходного слова равна . Такой дешифратор называется полным. Если часть входных наборов не используется, то число выходов меньше и дешифратор является неполным. Функционирование одноединичного дешифратора, где активные выходные сигналы принимают значение логической 1, описывается системой конъюнкций:
… .
Часто дешифраторы дополняются входом разрешения работы (Enable). Если на этот вход поступает активный логический сигнал (единица или ноль), то один из выходов дешифратора переходит в активное состояние, иначе все выходы неактивны вне зависимости от состояния входов. Функционирование одноединичного дешифратора с дополнительным входом (Enable) описывается системой конъюнкций:
… .
Обычно микросхемы дешифраторов выполняют с инверсными выходами. У такого дешифратора активный выбранный разряд принимает значение логического нуля. Двоичное слово на входе дешифратора часто называют адресом. Таблица истинности двухвходового двоичного дешифратора с четырьмя выходами () приведена в таблице 2.7.
Таблица 2.7 – Таблица истинности двухвходового двоичного дешифратора
Таблица 2.8 – Дешифратор с тремя входами адреса и входом разрешения на восемь выходов 23
Далее будет детально рассмотрен дешифратор, преобразующий двоичный код в десятичный код, подаваемый на семисегментный индикатор. Микросхема SN74LS248 D представляет собой дешифратор, преобразующий входной двоичный код в выходной десятичный (шестнадцатеричный). К выходу дешифратора подключают семисигментный индикатор с общим катодом.
Рисунок 2.16 – Условное обозначение микросхемы SN74LS192
На рисунке 2.16 приняты следующие обозначения: A–D – входная шина данных; QA–QG – выходная шина данных; LT – вход для проверки работоспособности; RBO, RB1 – входы управления. Для начала работы необходимо подать на них сигнал высокого уровня. Схема моделирования двухразрядного двоично-десятичного счетчика с дешифраторами и индикаторами представлена на рисунке 2.17.
Рисунок 2.17 – Модель двоично-десятичного счётчика с индикацией с коэффициентом счёта Ксч = 81 Импульсы для счета формируются функциональным генератором XFG1 (рисунок 2.18) и подаются на суммирующий вход UP первого счетчика DD 3 (если подавать импульсы на вход DOWN, то счет будет вестись в обратном направлении). Счетные импульсы на вход старшего счетчика DD 4 подаются с выхода переполнения первого счетчика. Выходной сигнал счетчиков в виде параллельного двоичного кода поступает на выводы QA, QB, QC, QD, которые соединены со входами дешифраторов DD 7, DD 8. Преобразованный сигнал с дешифраторов подается на семисегментные индикаторы и отображается в удобном виде.
Рисунок 2.18 – Параметры счетных импульсов и их осциллограмма
Задания для выполнения 1 Рассчитать схему счетчика с заданным коэффициентом счета (таблица 2.9) согласно рисунку 2.15. 2 Выполнить моделирование счетчика согласно рисунку 2.17. 3 Убедиться, что реализуется заданный коэффициент счета.
Таблица 2.9 – Исходные данные к заданию 2
Продолжение таблицы 2.9
Окончание таблицы 2.9
Список литературы 1 Сборник задач по электротехнике и основам электроники / Под ред. В. Г. Герасимова. – М.: Высш. шк., 1987. – 288 с. 2 Лачин, В. И. Электроника: учеб. пособие / В. И. Лачин, Н. С. Савелов. – 7-е изд., перераб. и доп. – Ростов н/Д: Феникс, 2009. – 703 с. 3 Клочков, М. И. Расчет элементов и моделирование схем энергетической и информационной электроники: учеб. пособие / М. И. Клочков. – Хабаровск: ДВГУПС, 2004. – 138 c. 4 Марченко, А. Л. Основы электроники: учеб. пособие для вузов / А. Л. Марченко. – М.: ДМК Пресс, 2008. – 296 с. 5 Москатов, Е. А. Справочник по полупроводниковым приборам / Е. А. Москатов – М.: Радио, 2005. – 208 с. 6 Панфилов, Д. И. Электротехника и электроника в экспериментах и упражнениях. Лаборатория на компьютере: в 2 т. / Д. И. Панфилов, В. С. Иванов, И. Н. Чепурин. – 2-е изд., перераб. И доп. – М.: МЭИ, 2004. – 304 с.
Приложение А (справочное) Таблица А.1 – Параметры биполярных транзисторов
а – ВС547A (КТ3102Б); б – BD135 (КТ815Б); в – 2N2218 (КТ928А); г – BD237 (КТ817Г) Рисунок А.1 –Выходные характеристики биполярных транзисторов
Приложение Б (справочное)
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2021-05-27; просмотров: 1052; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.135.231 (0.007 с.) |