Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Выбор и обоснование структурной схемы устройстваСодержание книги
Поиск на нашем сайте
В предыдущем пункте мы рассмотрели несколько вариантов возможной реализации усилителей. У каждого из них есть свои преимущества и недостатки. Нам необходимо выбрать наиболее подходящий тип усилителя. Согласно техническому заданию динамический диапазон изменения выходного напряжения как на переменном так и на постоянном токе равны и . Применение линейных усилителей в таком широком диапазоне не выгодно, так как при малых значениях сигнала выходное напряжение сильно искажается, а при больших значениях токов (до в нашем случае) увеличиваются потери на выходном каскаде. Как следствие имеем невысокий КПД. К тому же применение линейных усилителей при значительных токах увеличивает габариты самого усилителя за счет использования теплоотводящих элементов (радиаторов) больших размеров. В некоторых случаях радиаторы могут занимать больше половины объема всего устройства. Поэтому от использования усилителей классов А, В и АВ отказываемся. Усилители классов A+ и G тоже можно отнести к линейным усилителям. Они по сравнению с усилителями, работающими в режимах А, В и АВ обладают большим КПД, однако это значение еще не предел. Наивысшими показателями этого параметра обладают усилители класса D или ШИМ усилители. Данный тип усилителей в последнее время широко стал применяться в звуковой схемотехнике, особенно в устройствах питающихся от аккумуляторных батарей (в CD-плейерах, MP3-проигрывателях) за счет своей высокой эффективности [].
В идеальных усилителях класса D сигнал за период не имеет никакого искажения и никакой генерации шума в слышимой полосе частот, наряду с обеспечением 100%-ой КПД. Однако, как показано на рис. **, усилители класса D, применяемые на практике, имеют "неидеальности", которые производят искажение сигнала и генерацию шума. Эти "неидеальности" вызваны искаженной формой сигнала переключения, производимой усилителями класса D. Причины этих искажений следующие: 1. Нелинейность в ШИМ сигнале поступающего от модулятора к ключам, из-за ограниченной разрешающей способности и/или колебаний во времени; 2. Временные ошибки, которые вводятся драйверами, такие как время задержки tз, время включения tвкл и время выключения tвыкл;
3. Нежелательные параметры в ключевых устройствах, такие как конечное сопротивление канала транзистора во включенном состоянии, конечная скорость переключения или параметры внутреннего диода; 4. Паразитные связи, которые появляются на печатной плате при изготовлении прибора; 5. Колебания напряжения источника питания из-за его конечного импеданса и реактивной мощности, текущей через цепь постоянного тока; 6. Нелинейность в выходном ФНЧ. Несмотря на это значение КПД на практике может достигать значений 85-95%. Поэтому при проектировании усилителя напряжения за основу возьмем структурную схему усилителя класса D. Согласно техническому заданию усилитель должен выдавать на выходе постоянное и переменное напряжения. Поэтому необходимы два источника опорного напряжения: постоянный и переменный с частотой 50 Гц. Причем фаза переменного сигнала согласно ТЗ должна регулироваться в пределах от 0 до 360 эл. град. с возможностью синхронизации от сети. К тому же необходимо иметь внутренний источник синусоидального сигнала с частотой 50 Гц для работы в автономном режиме. На рис. ** представлена структурная схема усилителя.
Рис. **. Структурная схема
Выбор режима синхронизации осуществляется с помощью переключателя SA1. Кварц ZQ используется для синтеза частоты в 50 Гц в режиме "внутренней синхронизации". С помощью обычных "аналоговых" схем на мультивибраторах или других подобных генераторах трудно обеспечить генерацию синусоидального напряжения с частотой 50 Гц и точностью менее 1%. Это связан с сильной температурной зависимостью номиналов пассивных элементов (особенно конденсаторов). Поэтому нужно использовать иной подход к решению проблемы. В настоящее время западными производителями выпускаются специальные микросхемы для генерации сигналов синусоидальной формы. С помощью таких микросхем можно получить любую частоту от 0 до нескольких десятков килогерц []. Эти микросхемы генерируют частоту, используя в качестве эталонной частоты высокочастотный сигнал от кварца. С помощью счетчиков эта частота делится на более низкую и фильтруется. При этом температурный дрейф частоты на выходе получается много меньше, чем в схемах, собранных на дискретных элементах. Регулирование фазы задающего сигнала производится переменным резистором . Ключ SA2 переключает между собой задающие сигналы, поступающие на вход ШИМ-2. Их уровень от 0 до максимального значения регулируется другим переменным резистором . Со среднего вывода этого резистора сигнал поступает на вход ШИМ модулятора. На его выходе формируются импульсы, длительность которых пропорциональна уровню управляющего сигнала (см. рис. ** (из предыд главы)), поступающего на вход силовой части усилителя. Чтобы следить за напряжением на выходе усилителя, заведена отрицательная обратная связь по напряжению (рис. **), корректирующая сигнал управления. Блок токовой защиты ограничивает величину тока в нагрузке в пределах допустимого значения, т.е. не больше на переменном токе и не больше на постоянном. Если усилитель будет длительное время работать на низкоомную нагрузку, т.е. при больших токах, то может произойти перегрев элементов силовой части (транзисторов, работающих в ключевом режиме) и дальнейший выход их из строя. Чтобы предотвратить это в структурной схеме усилителя предусмотрен блок тепловой защиты. Заметим, что даже если правильно рассчитать необходимую площадь теплоотводов (радиаторов) при максимальной нагрузке, могут возникнуть ситуации, когда отвод тепла от транзисторов с их помощью может быть затруднен. Например, если максимальная температура окружающей среды выше расчетной или если в процессе длительной эксплуатации прибора ухудшился процесс отвода тепла от транзистора (оседание пыли на радиатор, увеличение теплового сопротивления между радиатором и корпусом транзистора и т.п.).
1.3 Выбор силовой части усилителя
Существует ряд способов выполнения выходных каскадов ШИМ усилителей. Рассмотрим некоторые из них. На рис. ** представлена схема, которая часто называется двухтактной. Действительно, за период энергия от входного источника дважды передается к LC-фильтру и нагрузке. Каждый из ключей замкнут в течение интервала (импульс) в своем полупериоде. Для данной и других двухтактных схем удобно определять коэффициент заполнения импульсов как отношение к . Следовательно, коэффициенту соответствует включенное состояние каждого ключа, продолжающееся половину периода. При оба ключа постоянно закрыты. В преобразователе может быть использована как однофазная двухполупериодная схема выпрямления, показанная на рис. **, так и другая симметричная схема – мостовая. Явное достоинство двухтактной схемы – общая точка управления ключами (истоки транзисторов VT1 и VT2 объединены), что позволяет значительно упростить выходной каскад устройства управления.
Характерным для двухтактной схемы является напряжение на закрытом ключе – его максимальное значение равно без учета влияния индуктивности рассеяния первичной обмотки трансформатора. Для схемы на рис. ** существенное значение имеет магнитная связь между обмотками и – чем она лучше, тем меньше индуктивность рассеяния каждой из обмоток и, следовательно, тем меньше выброс напряжения на ключе при его запирании. Для снижении выброса напряжения и возможности выбора транзистора с меньшим допустимымнапряжением стока (коллектора) помимо конструктивных решений по изготовлению трансформатора, приводящих к снижению , пригодны различные типы демпфирующих цепей: стабилитроны, RC- или RCD-цепи. Особенность применения такой цепи в двухтактной схеме заключается в том, что она выполняется общей для двух транзисторов, что позволяет выполнить все устройство более простым и дешевым.
Схема преобразователя, работающего по принципу двухтактного и обычно называемого полумостовым, показана на рис. **. В данной схеме, использующей два входных источника напряжения и в трансформаторе, в отличие от предыдущей схемы, применяется только одна первичная обмотка . Ключи VT1 и VT2 включаются поочередно на время в каждом полупериоде работы. К точкам а, б схемы поступает прямоугольное импульсное напряжение, получаемое от вторичных обмоток , и выпрямленное диодами VD1, VD2. Длительность импульсов регулируется управляющими сигналами на затворах ключей, коэффициент заполнения изменяется от 0 до 1. Частота первой гармоники напряжения, которую необходимо подавлять LC-фильтром, равна, так же как и в двухтактной схеме, удвоенной частоте работы ключей и трансформатора, что является преимуществом данной схемы по сравнению с однотактной.
Процессы в полумостовом преобразователе в основном сходны с процессами в преобразователе со средней точкой первичной обмотки трансформатора. Максимальное напряжение на ключах не превышает , а индуктивность рассеяния, приведенная к первичной обмотке , в отличие от двухтактной схемы не увеличивает максимальное напряжение на запираемом ключе. Схема преобразователя, показанная на рис. **, требует двух источников постоянного напряжения на входе, что почти всегда не применимо на практике. При использовании емкостного делителя с конденсаторами равной емкости и подключенного к выводам одного источника напряжения достаточно просто получаются два источника напряжения, необходимые для работы полумостовой схемы (рис. **). Постоянное напряжение на каждом из конденсаторов С1, С2 равно . Емкость конденсатора делителя должна быть такой, чтобы пульсация напряжения на нем была достаточно малой. Естественным шагом в развитии полумостовой схемы с емкостным делителем является схема, в которой все плечи моста выполнены как ключи (рис. **). Работа схемы и ее возможности во многом определяются выбранной последовательностью переключения транзисторов VT1-VT4 в интервале паузы. Рассмотрим работу схемы более подробно. Для этого представим преобразователь в виде схемы замещения (рис. **).
Трансформатор на этой схеме представлен в виде идеального с обмотками , и и линейной индуктивностью намагничивания , подключенной к первичной обмотке . Индуктивности рассеяния обмоток пока не принимаем в рассмотение. Индуктивно-емкостной фильтр и нагрузку представим источником постоянного тока . В схеме возможны 4 последовательности переключения транзистора за период T.
1. Во время импульса в каждом полупериоде открыты два диагонально расположенных ключа VT1, VT4 (VT2, VT3). В паузе, т.е. в интервале (рис. **), все четыре ключа закрыты. В трех остальных случаях работа ключей отличается только их состоянием в интервале паузы. 2. В паузе в первом или во втором полупериоде открыты два верхних ключа VT1, VT3; 3. В паузе в первом или во втором полупериодах открыты два нижних ключа VT2, VT4; 2. В паузе в первом полупериоде открыты два верхних ключа VT1, VT3, а во втором – два нижних VT2, VT4. Последовательности переключения 2…4 равноценны, за исключением того, что в последнем случае перегрев всех ключей является равномерным. Поэтому порядок переключения 4 является предпочтительным по сравнению со случаями 2 и 3.
Отличие в работе схемы с выключенными транзисторами во время паузы от варианта, когда в паузе открыты либо транзисторы VT1, VT3, либо транзисторы VT2, VT4 состоит в том, что: во-первых, различен контур прохождения тока намагничивания во время паузы. Если все ключи разомкнуты, ток намагничивания вынужден проходить во вторичной цепи через диоды VD1 и VD2 поочередно, а при замкнутых ключах в паузе ток намагничивания проходит через них. Во-вторых, имеется отличие в поведении тока, связанного с индуктивностью рассеяния трансформатора. Будем считать, что индуктивность рассеяния обмоток приведены к первичной. Если в паузе все транзисторы выключены, единственная возможность прохождения тока в индуктивности рассеяния - использование контура, состоящего из внутренних диодов полевых транзисторов и входного источника . Таким образом, достаточно быстро ток становится равным нулю. В другом случае, когда в паузе первичная обмотка трансформатора замкнута ключами, ток проходит через них. Указанные различия (малосущественные на первый взгляд) приводят к разным возможностям схем и их характеристик при работе на высоких частотах переключения, которые более подробно рассмотрены в [мелеш]. В случае, когда транзисторы в паузе разомкнуты мостовой преобразователь является, по существу, трансформаторным аналогом понижающего регулятора напряжения. На рис. ** показаны диаграммы процессов в схеме замещения мостового преобразователя. Мостовая схема преобразователя вобрала в себя лучшее от двухтактной и полумостовой схем преобразователей: 1. Только одна первичная обмотка трансформатора (как в полумостовой схеме); 2. Напряжение на закрытом ключе не превосходит и не требует подключения демпфирующих цепей для устранения выбросов напряжения на запираемом транзисторе (как в полумостовой схеме) 3. к первичной обмотке во время импульса приложено напряжение , поэтому ток, проходящий через ключи, вдвое меньше, чем в полумостовой схеме (этот ток такой же как в двухтактной схеме).
Пульсации напряжения на выходе могут быть определены из рассмотрения импульсного напряжения на входе LC-фильтра. Мостовой преобразователь без гальванической развязки нагрузки и источника питания (рис. **) широко применяется в звуковой схемотехнике. Нагрузка в этой схеме подключается к диагонали моста через низкочастотные фильтры L1C1 и L2C2. При нулевом сигнале задания транзисторы VT1- VT4 переключаются с и потенциалы в точках а и b равны соответственно , а напряжение на нагрузке .
При изменении сигнала задания на величину (рис. **) изменяются и длительности открытого состояния транзисторов VT1-VT4 на величину . Причем длительности открытого состояния транзисторов VT1, VT4 станут равными , а транзисторов VT2, VT3 соответственно , где – длительность открытого состояния транзисторов при нулевом сигнале задания . Штриховыми линиями отмечены установившиеся значения токов в дросселях L1, L2 и напряжений на конденсаторах С1, С2 при сигнале задания . Нарастание и спад токов и напряжений будет происходить по другим законам, чем в установившемся режиме при нулевом сигнале. К примеру, ток в дросселе L1 нарастает под действием разности напряжений , а спадает уже под действием напряжения . Причем всегда выполняется неравенство , т.к. . Параметры ФНЧ берутся одинаковыми: L1=L2, C1=C2. Чтобы выровнять потенциалы точек а и b в схему включен конденсатор С3. Это необходимо, так как параметры транзисторов VT1-VT4, а также выходных НЧ фильтров имеют разброс. К тому же такая схема позволяет сгладить пульсации напряжения на нагрузке. Такая схема включения позволяет получать на нагрузке напряжения величиной в доли вольт при больших питающих напряжениях, что достаточно важно в нашем случае. К тому же КПД таких схем может достигать величин 85-95% (100% в идеале). Поэтому в качестве выходного каскада усилителя напряжения выбираем данную схему. Структурная схема усилителя преобразуется к виду, представленному на рис. **.
2. Расчет усилителя
|
|||||||||
Последнее изменение этой страницы: 2021-05-27; просмотров: 80; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.232.108 (0.013 с.) |