Традиционные источники углерода 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Традиционные источники углерода



Углеродсодержащее сырье является основным сырьем микробного синтеза. Наиболее широко применяемые в производственных условиях источники углерода перечислены в табл. 2. Большинство микроорганизмов хорошо ассимилирует углеводы. При катаболизме большое значение имеют строение углеродного скелета молекул (прямой, разветвленный или циклический) и степень окисления углеродных атомов. Легкодоступными счита­ются сахара, особенно гексозы, за ними следуют многоатомные спирты (глицерин, маннит и др.) и карбоновые кислоты.

До недавнего времени существовало мнение, что органические кислоты малодоступны для большинства микроорганизмов, однако на практике довольно часто встречаются микроорганизмы, успешно утилизирующие органические кислоты, особенно в анаэробных условиях.

Низкомолекулярные спирты (метанол, этанол) можно отнести к числу перспективных видов микробиологического сырья, так как их ресурсы существенно увеличиваются благодаря успешному развитию технологии химического синтеза. Многие дрожжи родов Candida, Hansenula, Rhodosporidium, Endomycopsis и др. способны ассимилировать этанол. Дрожжи родов Pichia, Candida, Torulopsis и др. и бактерии, принадлежащие родам Methy-lomonas, Protaminobacter, Flavobacterium и др., используют в качестве единственного источника углерода метанол и образуют биомассу с высоким содержанием белков (60—70%).

В 1939 г. В. О. Таусоном была установлена способность разных видов микроорганизмов использовать в качестве единственного источника углерода и энергии н-алканы и некоторые фракции нефти. Отличительной особенностью углеводородов по сравнению с другими видами микробиологического сырья являет­ся низкая растворимость в воде. Этим объясняется тот факт, что только некоторые виды микроорганизмов в природе способны ассимилировать углеводороды. Максимальная растворимость н-алканов в воде около 60 мл/л при длине молекул от С2 до С4, но при увеличении цепи растворимость снижается.

 

Таблица 2. Источники углерода, применяемые для микробного синтеза

 

 

Субстрат Содержание основ­ного вещества Характеристика

Кристаллическая глю­коза

Техническая сахароза Техническая лактоза

Гидрол

Крахмал Уксусная кислота

Спирт этиловый синте­тический

Узкая фракция жид­кого парафина

 

 

 


99,5 %  

Сахарозы не менее

99,75 %

Лактозы не менее

92%

РВ не менее 70 % в пересчете на СВ

СВ не менее 80 %

Уксусной кислоты не менее 60 % Этанола не менее 92%

н-Алканов 87—93 %


Содержит до 9 % воды, до 0,07 % зольных веществ, в том числе же­леза не более 0,004 % Влажность до 0,15 %, зольных ве­ществ не более 0,03 % Влажность до 3 %, зольных ве­ществ не более 2 % и 1 % молоч­ной кислоты

Сиропообразная жидкость, РВ представлены главным образом глюкозой, зольных веществ до 7 %, рН 4,0

Зольных веществ Q.-35—1,2 % в пе­ресчете на СВ (Содержит формальдегид и до 1,0 % муравьиной кислоты Содержит до 0,21 % изопропилового спирта и до 15 мг/л органиче­ских кислот

Содержит до 0,5 % ароматических углеводородов и до 0,5 % серы


Побочные продукты производства

Многие ценные виды побочной продукции раньше считались отходами производства. В канализацию спускали воду после замачива­ния кукурузных зерен при их переработке в крахмал и глюкозу. Теперь эту воду упаривают, получая экстракт, и используют в микробиологической промышленности. Успешно используют отхо­ды химического производства (смесь карбоновых кислот — ян­тарной, кетоглутаровой, адипиновой) и др.; сульфитный щелок, зерновую и картофельную барду, мелассу, гидрол и т. д.

Таблица.3. Химический состав свекловичной мелассы

 

 

Содержание, %

 

Содержание, %

Наименование          
  среднее опти- Наименование среднее опти-
    маль-     маль-
    ное для     ное для
    дрож-     дрож-
    жей     жей

Сухое вещество        75—77

—   Зольность                6,6 — 7,5

7

Сахароза                        45

в том числе:

 

Инвертный сахар    0,5 — 1,2

—           К2О                   2,5—3,5

3,5

Раффиноза                0,5—1,0

MgO                 0,1—0,24

Сбраживаемые са-   46 — 48

50           СаО                  0,5—0,8

1,0

хара (суммарное

Азот

 

количество)

общий                   1,1 — 1,5

1,4

Коллоиды                     3 — 4

аминный

 

Доброкачествен-       62 — 65

65           до гидролиза  0,2—0,35

ность

после гидро-  0,5 — 0,6

0,4

 

лиза

 

Лизин                                            41      Алании

Гистидин                                      24      Цистин

Аргинин                                       26      Валин

Аспарагиновая кислота         251      Метионин

Треонин                                        41      Изолейцин


118

Следы 89 120

13


 



 


Комплексное использование всей побочной продукции производства далеко от совершенства. В нашей стране ежегодно оста­ется неиспользованной или нерационально используется около 1 млн т лактозы, содержащейся в сыворотке и пахте. В США из всего количества молочной сыворотки, образующейся при про­изводстве сыра (ежегодно 20 млн т), половина теряется со сточными водами. В то же время известно, что из 1 т сыворотки мож­но получить около 20 кг сухой биомассы дрожжей. Кроме того, из сепарированной бражки можно выделить допол­нительно около 4 кг протеина. Нерационально используется кар­тофельный сок, выделяемый из картофеля при производстве крахмала, а также альбуминное молоко, получаемое из сыворотки.

В микробиологической промышленности широко применяются меласса и гидрол — побочный продукт производства глюкозы из крахмала. Меласса характеризуется высоким содержанием сахаров (43—57%), в частности сахарозы (табл. 3).

В микробиологической промышленности используется ряд других побочных продуктов (табл. 4). В дальнейшем необходи­мо учесть потенциальные возможности постоянно возобновляю­щихся сырьевых ресурсов — первичных продуктов фотосинтеза, в первую очередь гидролизатов древесины и депротеинизированного сока растений.

Таблица 4. Побочные продукты, используемые в микробиологической промышленности в качестве основного сырья


Продукт Характеристика Область гтр йменён йя~х

Сульфитный щелок Картофельная барда Зерновая барда

Гидрол

Солодовое сусло Молочная сыворотка

Депротеинизирован-ный сок растений

Депротеинизирован-ный картофельный сок

Гкдролизат древесных отходов

Торфа

Гидролизат (упаренный)

Пшеничные отруби


СВ 4,0—4,5 %, в том числе РВ 3,3—3,5 % СВ 4,3—4,5 %, в том числе РВ 2,0—2,2 % СВ 7,3—8,1 %, в том числе РВ 2,5—2,9 % СВ 76—78 %, в том числе сбраживаемых    Сахаров 50%

СВ 15—20 %, в том числе РВ (мальтоза, декстрины) 8—12 %, витамины СВ 6,5—7,5 %, в том числе лактозы 4,0—4,8 %, белков 0,5—1,0%, жиров 0,05— 0,4 %, витамины СВ 5—8 %, в том числе РВ 0,8—2,0 %, аминокислоты, витамины

СВ 4—5 %, в том числе РВ 0,5—1,0 %, витамины, ами­нокислоты

СВ 6—9 %, в том числе РВ 3—4 %, органических кис­лот 0,3—0,4 % СВ 48—52%, в том числе РВ 26—33 % (галактоза, глюкоза, манноза, ксилоза, рамноза); гуминовые веще­ства

СВ 90—92 %, в том числе экстрактивных веществ 48—50%, крахмала 25— 30%, белков 11 — 13%, жиров 2,5—3,0 %, целлю­лозы 15—17 %


 

кормовых

Производство

дрожжей То же

Производство    дрожжей, антибиотиков, этанола

Выращивание   дрожжей, бактерий, микромицетов

Получение дрожжей, эта­нола, лактанов

кормовых

Выращивание дрожжей

Производство хлебопекар­ных дрожжей, антибиотиков

Получение кормовых дрож­жей

То же

Производство ферментов


Источники минерального питания

Азот. В бактериальных клетках азота до 12 % в пересчете на сухую биомассу, в мицелиальных грибах — до 10%. Микроорганизмы могут использовать как органические, так и неорганиче­ские источники азота. Известно, что бактерии более требователь­ны к источникам азота, чем большинство микромицетов, актиномицетов и дрожжей. У клеток животных и растений особые тре­бования к источникам азота. Продуктивность по биомассе в за­висимости от источника азота не всегда совпадает с продуктив­ностью целевого метаболита и зависит также от условий культи­вирования (табл. 5). При выращивании биомасс

Таблица 5. Влияние минеральных источников азота на рост биомассы и биосинтез лимонной кислоты мутантом A. niger при поверхностном и глубинном культивирования (Р. Я- Карклиньш)

 

 

 

 

Источник азота

Поверхностное культивиро­вание

Глубинное культивиро­вание

АСБ, г/л Лимонная кислота, г/л АСБ, г/л Лимонная кислота, г/л

(NH,)2SO4                              6,2 (NH4)2HPO4                       4,2 NH4C1                                   5,5 KNO3                                    5,0

40 59 60 30

12 15 14 11 9 15

82

95 101 30 30 88

Ca(NO3)2                            3,5 NH.CONHs                         6,9

35 58

в концентрации 30—40 г/л потребность в добавках азотсодержащих солей обычно не превышает 0,3—0,4 % от объема среды. В периоди­ческих режимах культивирования потребление азота заканчива­ется в первые 6—12 ч роста (в первой половине экспоненциаль­ной фазы). При направленном биосинтезе азотсодержащих мета­болитов потребность в азоте существенно возрастает.

Большинство дрожжей хорошо усваивает аммиачные соли -сульфат аммония, фосфат аммония, а также аммиак из водного раствора. Соли азотной кислоты не всегда хорошо усваиваются. Только некоторые виды дрожжей испытывают потребность в нитратах. Часто источником азота в состав сред включают мочевину. При направленном биосинтезе, например, целлюлолитических ферментов грибом Peniophora gigantea наивысшая биохимиче­ская активность клеток наблюдается на средах с органическим азотом (аспарагин, пептон и др.).

Другие минеральные соли. Фосфор, как известно, входит в состав нуклеиновых кислот, фосфолипидов и других важных компонентов клетки. Иногда фосфор накапливается в ней в виде полифосфатов. Небольшая часть усвоенного фосфора существует в форме макроэргических соединений — АТР.

Фосфор является важным компонентом клетки. Микроорганизмы нуждаются еще в 10 минеральных элементах, но в значи­тельно меньших количествах (10~3— 10~4М). Повышенная по­требность микроорганизмов в микроэлементах возникает, если целевой метаболит содержит микроэлемент. Так, при биосинтезе витамина В]2 в состав питательной среды включают кобальт; молибден и бор стимулируют биосинтез тиамина в клетках клубеньковых бактерий; медь присутствует в ряде ферментов, перенося­щих электроны от субстрата к кислороду.

Минеральный состав питательной среды формирует распределение электрических зарядов на поверхности клеток. Обычно клетки микроорганизмов имеют отрицательный потенциал (16— 20 мВ). При добавлении в среду электролитов он снижается, и тем сильнее, чем выше валентность добавляемого противоиона. Увеличение содержания К+ или Na+ до 500 мг/л уменьшает величину потенциала клеток до 10—12 мВ. Введение в среду 60— 80 мг/л Са2+, Fe2+ или Си2+, равно как и 5 мг/л Аl+3, может привести клетки в электронейтральное состояние. В отличие от бактерий дрожжи и мицелиальные грибы не перезаряжаются и не приобретают положительный потенциал. Изменение электриче­ского потенциала клеток может изменить их физиологическую деятельность, воздействовать на селективность клеточной мем­браны, вызвать флокуляцию или флотацию клеток.



Поделиться:


Читайте также:




Последнее изменение этой страницы: 2021-04-05; просмотров: 108; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.9.146 (0.025 с.)