Приведение квадратичной формы к каноническому виду. Метод Лагранжа. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Приведение квадратичной формы к каноническому виду. Метод Лагранжа.

Поиск

Канонический вид квадратичной квадратичной формы – вид, в котором отсутствуют слагаемые с парными произведениями переменных

Любую квадратичную форму можно привести к каноническому виду:

– форму двух переменных – к виду

– трёх переменных – к виду ;

– форму переменных – к виду:

И ключевой момент этой технической стороны состоит в линейных заменах:
– ТАКИХ, которые как раз и приводят форму к каноническому виду.

Систему часто записывают в виде компактного матричного уравнения , где:
– столбцы старых и новых переменных, – матрица линейного преобразования.

Пример 6

Привести квадратичную форму к каноническому виду методом Лагранжа. Записать матрицу соответствующего линейного преобразования.

Решение: здесь используются стандартные замены с последующим применением формулы :

– форма в каноническом виде.

Запишем матрицу проведённого линейного преобразования: – она состоит из «игрековых» коэффициентов замен .

Ответ: ,

Пример, конечно, прозрачный, но сразу зададимся вопросом – как выполнить проверку? Её можно выполнить матричным методом по формуле , где транспонированная матрица линейного преобразования, – исходная и – новая матрица квадратичной формы.

В нашем случае – исходная матрица формы , и, перемножая три матрицы:

– получаем матрицу формы , что и требовалось проверить.

Пример 7

Привести квадратичную форму к каноническому виду методом Лагранжа.

Записать матрицу соответствующего линейного преобразования.

Решение: когда в форме присутствуют квадраты переменных (а они есть почти всегда), то используется другой приём. Идея состоит в выделении полных квадратов по формулам , с дальнейшей заменой переменных.

Сначала выбираем какую-нибудь переменную, которая находится в квадрате, здесь можно выбрать или . Переменные традиционно перебирают по порядку, поэтому рассматриваем и собираем вместе все слагаемые, где есть эта переменная:

«двойку» удобно вынести за скобки:

очевидно, всё дело сведётся к формуле , и нам нужно искусственно организовать данную конструкцию. Для этого в скобках прибавляем и, чтобы ничего не изменилось – за скобками проводим вычитание:

выделяем полный квадрат:
, после чего выполним проверку обратными действиями – раскроем скобки и приведём подобные слагаемые:
, ОК

Теперь проведём замены :

– форма в каноническом виде.

И тут вроде бы можно записать матрицу линейного преобразования, но есть одна загвоздка, проведённые замены имеют вид :

но нам-то нужна другая матрица – матрица уравнения .

Для разрешения уравнения относительно умножим обе его части на слева:

 

Метод ортогональных преобразований:

 

 




Поделиться:


Последнее изменение этой страницы: 2021-04-04; просмотров: 370; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.181.194 (0.009 с.)