Боровская теория атома водорода (не вполне совершенная) 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Боровская теория атома водорода (не вполне совершенная)



 

Первое подробное описание энергетических уровней водорода было дано Нильсом Бором (1885–1962) в 1913 году. Бор получил Нобелевскую премию по физике в 1922 году

 

«за заслуги в изучении строения атома».

 

Созданная Бором теория атома водорода считается предвестницей квантовой теории. Бор добился большого прогресса — фактически он сумел точно вычислить энергетические уровни атома водорода, выведя формулу Ридберга и предсказав все спектральные линии водорода.

Бор также первым выдвинул две идеи, которыми мы уже пользовались. Он заявил, что атомная система может существовать только в некоторых состояниях, которые он называл «стационарными». Сегодня мы обычно называем их собственными состояниями энергии. Каждому из этих состояний соответствует чётко определённое значение энергии E  . Переход из одного стационарного состояния в другое может произойти при поглощении и испускании света или другом способе потери или получения энергии системой, а количество этой энергии должно быть равно разности энергий данных двух состояний. Эта идея положена в основу схем, представленных на рис. 9.3 и 8.7, где стрелки изображают переходы между состояниями, происходящие при поглощении и испускании света.

Бор также выдвинул постулат, известный ныне как правило частот. Частота испускаемого или поглощаемого света при переходе от начального энергетического состояния E  1 к конечному E  2 равна разности их энергии, делённой на постоянную Планка:

ν  =| E  1− E  2|/ h  ,

где ν   — частота, а h   — постоянная Планка (h  =6,6∙10−34 Дж ∙ сек). Вертикальными линиями в формуле обозначена абсолютная величина. В случае поглощения E  1 меньше E  2, так что разность E  1− E  2 имеет отрицательное значение. Смысл абсолютной величины состоит в том, что в качестве результата берётся положительное значение, даже если разность получается отрицательной. Частота ν   должна быть положительным числом. Умножив обе части формулы на h  , получаем, что E   — разность энергий между энергетическими уровнями (стационарными состояниями) — равна E  = h∙ν  , то есть даётся формулой Планка, которую использовал Эйнштейн для объяснения обсуждавшегося в главе 4 фотоэлектрического эффекта.

Что же представляет собой атом водорода и в чём недостаток метода, предложенного Бором? Атом водорода состоит из двух заряженных частиц: протона, несущего положительный заряд +1, и электрона, который имеет отрицательный заряд −1. Когда говорится о заряде, равном 1, это в действительности сокращённая запись для заряда одного протона. В стандартных физических единицах он равен 1,6∙10−19 Кл, где Кл — обозначение кулона, единицы измерения заряда. Эрнест Резерфорд (1871–1937) провёл в 1911 году эксперименты, которые показали, что атомы состоят из маленького тяжёлого положительно заряженного ядра и одного или более электронов вокруг него. Резерфорд получил Нобелевскую премию по химии в 1908 году

 

«за проведённые им исследования в области распада элементов в химии радиоактивных веществ».

 

Открытия Резерфорда в применении к атому водорода означают, что протон является ядром, а единственный электрон находится вне ядра. Даже ядро водорода, состоящее из одного протона, намного тяжелее электрона. Масса протона составляет m  p=1,67∙10−27 кг, тогда как масса электрона равна всего лишь m  e=9,1∙10−31 кг. То есть протон весит примерно в 1836 раз больше, чем электрон.

В боровской модели водорода электрон обращается вокруг протона, как планета вокруг Солнца. В наинизшем энергетическом состоянии атома водорода (n  =1) электрон движется вокруг протона по окружности. В более высоких энергетических состояниях орбита электрона с n   больше 1 может принимать различные формы. Некоторые из них остаются окружностями, но другие оказываются эллипсами. С учётом сказанного в предыдущих главах эта картина электрона, обращающегося вокруг протона, должна немедленно вызвать срабатывание «тревожной сигнализации». В главе 6 обсуждался принцип неопределённости Гейзенберга. Мы знаем, что движение абсолютно малой частицы не может описываться классической траекторией. Для описания траектории необходимо знать положение и импульс частицы на протяжении всего времени движения. Однако принцип неопределённости Гейзенберга гласит, что невозможно одновременно и точно знать положение и импульс. В соответствии с соотношением неопределённости Δ x∙  Δ p  ≥ h  /4π, где h   — постоянная Планка. Абсолютно малые частицы описываются волнами амплитуды вероятности, а не траекториями. Конечно, в 1913 году, когда Бор выдвинул своё математическое описание атома водорода, природа абсолютно малых частиц была ещё неизвестна.

Ошибочность боровского подхода становится очевидной, когда он применяется к системам, отличным от атома водорода. Хотя он способен очень точно предсказать энергетические уровни, а тем самым и спектр атома водорода, он не позволяет сделать это для второго по простоте атома — гелия. Не может он предсказать и свойств простейшей молекулы, а именно молекулы водорода, которая состоит из двух атомов. Метод отбора не объясняет силу химической связи, которая удерживает вместе два атома водорода в молекуле. Тем не менее Бор сделал огромный шаг в правильном направлении, а ошибки его подхода в конечном счёте привели к созданию истинной квантовой теории в 1925 году.

 

 



Поделиться:


Последнее изменение этой страницы: 2021-04-04; просмотров: 55; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.190.159.10 (0.006 с.)