Расчет местной прочности скальных оснований 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Расчет местной прочности скальных оснований



9.1 Расчет местной прочности скальных оснований гидротехнических сооружений следует производить:

для установления необходимости разработки мероприятий, предотвращающих возможное нарушение противофильтрационных устройств;

для учета при разработке мероприятий по повышению прочности и устойчивости сооружений;

для учета достижения предела местной прочности при расчетах напряженно-деформированного состояния системы «сооружение-основание».

Расчет местной прочности следует производить для оснований сооружений I и II классов по предельным состояниям второй группы при основном сочетании нагрузок. При этом значения коэффициентов g n и g lc принимают равными единице (g n = g lc = 1). Коэффициент g с принимается равным 0,95.

Деформационные характеристики основания определяются в соответствии с указаниями 5.3.

9.2 Проверку местной прочности скальных оснований следует производить по расчетным площадкам:

а) совпадающим с плоскостями, приуроченными к трещинам в массиве;

б) совпадающим с плоскостью, приуроченной к контакту «сооружение-основание» и к контактам скальной породы с укрепительными конструкциями в основании (шпонками, зубьями, решетками и т.д.);

в) не совпадающим с плоскостями, приуроченными к трещинам и к контакту «сооружение-основание».

9.3 Критериями обеспечения местной прочности по площадкам, указанным во втором и третьем абзацах 9.2 б, в, являются условия

sj > Rt,m, II;                                                                                                                        (22)

                                    (23)

где q j - отношение предельных касательных напряжений на расчетной площадке к эксплуатационным;

s j, t j - соответственно нормальное и касательное напряжения на расчетной площадке, приуроченной к плоскости трещины (контакта), от нормативных нагрузок в расчетном сочетании;

s1, s3 - соответственно максимальное и минимальное главные напряжения от тех же нагрузок;

b j - острый угол между расчетной площадкой, приуроченной к трещине (контакту), и направлением главного напряжения s1;

tg φj ,II, cj ,II - расчетные характеристики для расчетных площадок, приуроченных к трещинам (контакту);

R t , m , II - расчетное значение предела прочности массива скального грунта на одноосное растяжение, определяемое в соответствии с требованиями 5.35.

9.4 Критериями обеспечения местной прочности по площадкам, указанным в последнем абзаце 9.2 в, являются условия

s 3 > Rt,m, II;                                                                                                                        (24)

                                                 (25)

где tg φm ,II, cm ,II - расчетные характеристики для расчетных площадок, не приуроченных к трещинам и контакту «сооружение-основание».

9.5 Условия (22) и (24) при оценках возможности разуплотнения массива следует проверять во всех указанных в 9.1 случаях, а условия (23) и (25) при оценках возможности пластических деформаций - в этих же случаях, но только при s3 < 0.

Условия (23) и (25) следует проверять лишь для учета нарушений прочности основания при расчетах его напряженно-деформированного состояния и при разработке мероприятий по повышению прочности и устойчивости сооружения.

При оценке надежности противофильтрационных устройств проверка выполнения условия формулы (22) (если s3 < 0) при оценке разуплотнения основания для площадок, совпадающих с плоскостью завес, не производится.

При невыполнении приведенных выше критериев местной прочности необходимо определить очертания зон разуплотнения и пластических деформаций.

Зона разуплотнения не должна пересекать цементационную завесу и дренаж. В противном случае должны быть выполнены фильтрационные расчеты в соответствии с указаниями раздела 8 в нелинейной постановке с учетом измененного фильтрационного режима.

Зона пластических деформаций не должна охватывать более 1/3 подошвы сооружения или потенциально опасной расчетной поверхности сдвига.

9.6 При определении напряжений s j, t j, s1, s3 в формулах (22) - (25) следует применять вычислительные и экспериментальные методы механики сплошной среды и геомеханики.

Допускается рассматривать основание совместно с сооружением как систему линейно-деформируемых тел, на контакте между которыми выполняются условия равновесия и равенства перемещений.

При обосновании допускается схематизация системы «сооружение-основание», позволяющая решать плоскую задачу теории упругости применительно к одному или нескольким плоским сечениям. При этом поверхность основания может быть принята плоской, а тело основания - как однородным, так и состоящим из некоторого числа однородных областей либо имеющим непрерывно изменяющиеся характеристики. При необходимости следует учитывать естественный рельеф поверхности основания, пространственный характер работы системы «сооружение-основание», а также детализировать распределение механических характеристик основания.

Рекомендуется в надлежащих случаях при определении напряженного состояния основания учитывать возможную анизотропию его свойств.

Если при определении напряжений в некоторых областях основания одно или несколько из условий, определенных по формулам (22) - (25), не выполняется, то следует производить уточнение решения задачи. Такое уточнение следует выполнять с использованием нелинейной зависимости между напряжениями и деформациями или путем изменения геометрии сечения за счет исключения из рассмотрения указанных областей.

Определение напряжений

10.1 Напряжения в основании сооружения необходимо определять для использования их в расчетах прочности конструкций и сооружений, устойчивости сооружений, а также в расчетах осадок, несущей способности и местной прочности оснований.

При проектировании сооружений на скальных основаниях определение контактных напряжений необходимо для обоснования проектирования противофильтрационных мероприятий и оценки фильтрационной надежности подземного контура сооружений.

Расположение цементационной завесы под плотиной в области, где имеют место растягивающие напряжения, резко снижает эффективность завесы, что требует разработки специальных конструктивных решений для обеспечения надежности подземного контура сооружения.

10.2 Контактные напряжения для сооружений I и II классов допускается, а для сооружений III и IV классов рекомендуется определять упрощенными методами.

10.3 В расчетах прочности сооружений при использовании эпюр контактных напряжений, полученных из решения задач теории упругости, следует рассматривать дополнительно и вторую эпюру контактных напряжений, вычисленную одним из рекомендуемых упрощенных методов. Если полученные при этом изгибающие моменты имеют разные знаки, то при расчетах прочности рекомендуется использовать оба значения, уменьшенные на 10 % разности этих величин, а если одинаковые - то лишь больший изгибающий момент, также уменьшенный на указанную величину.

10.4 При определении контактных напряжений следует учитывать показатель гибкости сооружения tfl, определяемый:

а) при расчете сооружения по схеме плоской деформации:

в направлении длины сооружения

                                                                                                                       (26)

в направлении ширины сооружения

                                                                                                                       (27)

б) при расчете сооружения по схеме пространственной задачи в качестве tfl принимается больший из двух показателей гибкости вычисленных по формулам (25) и (26).

В формулах (25), (26)

                                                                                                               (28)

где v, v 1 - коэффициенты Пуассона соответственно грунта основания и материала сооружения;

Е, Е 1 - соответственно модули деформации грунта основания и упругости материала сооружения;

b, l - соответственно ширина и длина подошвы сооружения;

Ix, I у - моменты инерции расчетных элементов сооружения;

d - ширина расчетного элемента по длине подошвы сооружения, принимаемая равной 1;

h - средняя толщина сооружения.

В случаях когда показатель гибкости tfl < 1, контактные напряжения следует определять как для абсолютно жестких сооружений. При tfl > 1 контактные напряжения определяются с учетом гибкости сооружений.

10.5 Для сооружений с показателем гибкости tfl < 1 на однородных основаниях контактные напряжения определяют методом внецентренного сжатия, а для песчаных оснований со степенью плотности грунта Id £ 0,5 - методом экспериментальных эпюр по приложению И.

При наличии на части подошвы сооружения растягивающих нормальных контактных напряжений этот участок должен быть исключен из расчетной контактной поверхности, а для оставшейся части контактные напряжения должны быть пересчитаны.

10.6 При определении контактных напряжений с учетом гибкости сооружений допускается применять метод коэффициента постели. Гибкость элементов конструкции следует определять с учетом возможности образования трещин.

10.7 При использовании методов коэффициента постели и внецентренного сжатия касательные контактные напряжения допускается принимать распределенными равномерно, а при использовании метода экспериментальных эпюр - пропорционально нормальным контактным напряжениям.

Касательные напряжения, обусловленные действием вертикальных сил, при расчетах прочности сооружений, как правило, не учитываются. При получении на участке подошвы сооружения касательных напряжений, превышающих предельные, они должны быть приняты равными предельным, а на остальных участках они должны быть соответственно откорректированы на основе расчетов.

10.8 При неоднородных основаниях с вертикальными и крутопадающими слоями в расчетах контактных напряжений допускается использовать приближенные методы, в которых контактные напряжения следует принимать пропорциональными модулям деформации грунта каждого слоя в зависимости от их размеров и эксцентриситета приложения нагрузки. В пределах каждого слоя распределение контактных напряжений принимается линейным.

10.9 При наличии в основании слоев переменной толщины или при наклонном залегании слоев в расчетах контактных напряжений используют приближенные методы, основанные на приведении расчетной схемы основания со слоями переменной толщины или при наклонном залегании слоев к схеме условного основания с вертикально расположенными слоями.

При горизонтальном расположении слоев грунта постоянной толщины неоднородность основания может не учитываться.

10.10 При определении нормальных контактных напряжений методами экспериментальных эпюр и коэффициента постели учет неоднородности основания следует производить путем сложения ординат эпюр, определенных по 10.5 и 10.6 настоящего раздела в предположении однородных оснований с ординатами дополнительной эпюры. Ординаты дополнительной эпюры следует принимать равными разности ординат эпюр, построенных для случаев неоднородного и однородного оснований с использованием метода внецентренного сжатия.

10.11 При определении напряжений необходимо учитывать конструктивные особенности сооружения, последовательность его возведения, вид основания, а при залегании в основании мерзлых грунтов или возможном его промораживании - расположение талых и мерзлых зон, а также последовательность замораживания и оттаивания.

При расчете напряжений на контакте грунта с железобетонными распластанными конструкциями гидротехнических сооружений (плитами водобоев и рисберм плотин, возводимых на нескальных основаниях, плитами доков и т.п.) рекомендуется учитывать:

понижение жесткости железобетонных конструкций с учетом образования трещин ограниченного раскрытия, регламентированного нормами проектирования бетонных и железобетонных конструкций гидротехнических сооружений;

в бетонных и железобетонных конструкциях, возводимых на скальных и нескальных основаниях, последовательность укладки бетона отдельными блоками бетонирования.

10.12 В целях уменьшения усилий в конструкциях или в элементах сооружения при проектировании следует рассматривать возможность создания оптимального распределения контактных напряжений, предусматривая устройство выступов на подошве сооружений, уплотнения отдельных зон основания и соответствующую последовательность возведения и загружения сооружения.

10.13 При определении напряжений в основаниях следует применять численные методы механики сплошной среды и геомеханики с использованием вычислительной техники. При этом должны соблюдаться требования 11.4.

Контактные напряжения, как правило, следует вычислять по специальным программам, реализующим аналитические решения задачи или численные методы расчета (по напряжениям в окрестности контакта).

10.14 При использовании численных методов допускается схематизация системы «сооружение-основание», позволяющая решать плоские задачи применительно к одному или нескольким плоским сечениям. Неоднородность расчетных сечений следует учитывать, представляя их состоящими из некоторого числа однородных областей. При необходимости пространственный характер работы системы следует учитывать с помощью экспериментальных или вычислительных методов механики сплошной среды.

Расчетную область сечения основания рекомендуется ограничивать по вертикали на глубине сжимаемого слоя Нс, определяемой согласно 11.6.2, а по горизонтали – на расстоянии не менее Нс от сооружения.



Поделиться:


Последнее изменение этой страницы: 2021-02-07; просмотров: 79; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.63.184 (0.032 с.)