Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Глава 4. Теория вероятностей в азартных играх

Поиск

Игры в кости

Инструментом для игры являются кубики (кости) в количестве от одного до пяти в зависимости от вида игры. Суть игры состоит в выбрасывании кубиков и дальнейшем подсчёте очков, количество которых и определяет победителя. Основной принцип игры в кости — каждый игрок по очереди бросает некоторое количество игральных костей (от одной до пяти), после чего результат броска (сумма выпавших очков; в некоторых вариантах используются очки каждой кости по отдельности) используется для определения победителя или проигравшего.

Лотерея

Лотерея - организованная игра, при которой распределение выгод и убытков зависит от случайного извлечения того или иного билета или номера (жребия, лота).

Карточные игры

Карточная игра — игра с применением игральных карт, характеризуется случайным начальным состоянием, для определения которого используется набор (колода).

Важным принципом практически всех карточных игр является случайность порядка карт в колоде.

Игровые автоматы

Известно, что в игровых автоматах скорость вращения барабанов зависит от работы микропроцессора, повлиять на который нельзя. Но можно вычислить вероятность выигрыша на игровом автомате, в зависимости от количества символов на нем, числа барабанов и других условий. Однако выиграть это знание вряд ли поможет. В наше время наука о случайном очень важна. Она применяется в селекции при разведении ценных сортов растений, при приемке промышленной продукции, при расчете графика разгрузки вагонов и т.д.

Глава 5. Формулы теории вероятностей

Теорема умножения

Вероятность совместного появления двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило.

Заметим, что если при определении нового события, употребляем союз «И», то имеет место произведение некоторых событий.

Задача. В читальном зале имеется 6 учебников по теории вероятностей, из которых три в переплете. Библиотекарь наудачу взял два учебника. Найти вероятность того, что оба учебника окажутся в переплете.

Решение. Рассмотрим следующие события:

А1- первый взятый учебник в переплете;

A2- второй взятый учебник в переплете.

Событие, состоящее в том, что оба взятых учебника в переплете . События А1 и А2 являются зависимыми, так как вероятность наступления события А2 зависит от наступления события А1. Для решения указанной задачи воспользуемся теоремой умножения вероятностей зависимых событий:

.

Вероятность наступления события А1 p(A1) в соответствии с классическим определением вероятности:

=0.5

Вероятность наступления события А2 определяется условной вероятностью наступления события А2 при условии наступления события А1, т.е.

Тогда искомая вероятность наступления события:

P(A)=0,5*0,4=0,2.

Ответ: 0,2



Поделиться:


Последнее изменение этой страницы: 2021-02-07; просмотров: 298; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.133.206 (0.006 с.)