Этапы энергетического обмена 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Этапы энергетического обмена



Под­го­то­ви­тель­ный этап – во время него круп­ные пи­ще­вые по­ли­мер­ные мо­ле­ку­лы рас­па­да­ют­ся на более мел­кие фраг­мен­ты. В же­лу­доч­но-ки­шеч­ном трак­те мно­го­кле­точ­ных ор­га­низ­мов он осу­ществ­ля­ет­ся пи­ще­ва­ри­тель­ны­ми фер­мен­та­ми, у од­но­кле­точ­ных – фер­мен­та­ми ли­зо­сом. По­ли­са­ха­ри­ды рас­па­да­ют­ся на ди- и мо­но­са­ха­ри­ды, белки – до ами­но­кис­лот, жиры – до гли­це­ри­на и жир­ных кис­лот. В ходе этих пре­вра­ще­ний энер­гии вы­де­ля­ет­ся мало, она рас­се­и­ва­ет­ся в виде тепла, и АТФ не об­ра­зу­ет­ся. Боль­шин­ство кле­ток в первую оче­редь ис­поль­зу­ют уг­ле­во­ды, жиры оста­ют­ся в пер­вом ре­зер­ве и ис­поль­зу­ют­ся по окон­ча­ния за­па­са уг­ле­во­дов. Хотя есть и ис­клю­че­ния: в клет­ках ске­лет­ных мышц при на­ли­чии жир­ных кис­лот и глю­ко­зы пред­по­чте­ние от­да­ет­ся жир­ным кис­ло­там. Белки рас­хо­ду­ют­ся в по­след­нюю оче­редь, когда запас уг­ле­во­дов и жиров будет ис­чер­пан – при дли­тель­ном го­ло­да­нии.

Бес­кис­ло­род­ный этап (гли­ко­лиз) – про­ис­хо­дит в ци­то­плаз­ме кле­ток. Глав­ным ис­точ­ни­ком энер­гии в клет­ке яв­ля­ет­ся глю­ко­за. Ее бес­кис­ло­род­ное рас­щеп­ле­ние на­зы­ва­ют анаэ­роб­ным гли­ко­ли­зом. Он со­сто­ит из ряда по­сле­до­ва­тель­ных ре­ак­ций по пре­вра­ще­нию глю­ко­зы в лак­тат. В ходе гли­ко­ли­за при рас­щеп­ле­нии од­но­го моля глю­ко­зы вы­де­ля­ет­ся около 200 кДж энер­гии, 60 % ее рас­се­и­ва­ет­ся в виде тепла,  а 40 % идет на синтез двух мо­ле­кул АТФ.

Кис­ло­род­ный этап про­ис­хо­дит в ми­то­хон­дри­ях кле­ток. Он очень сло­жен по срав­не­нию с гли­ко­ли­зом, это про­цесс мно­го­ста­дий­ный и идет при уча­стии боль­шо­го ко­ли­че­ства фер­мен­тов. В ре­зуль­та­те тре­тье­го этапа энер­ге­ти­че­ско­го об­ме­на из двух мо­ле­кул пи­ро­ви­но­град­ной кис­ло­ты фор­ми­ру­ет­ся уг­ле­кис­лый газ, вода и 36 мо­ле­кул АТФ.

В трех­этап­ном ва­ри­ан­те энер­ге­ти­че­ско­го об­ме­на вы­де­ля­ет­ся – 38 мо­ле­кул АТФ.

В отсутствие кислорода или при его недостатке про­ исходит брожение. Брожение является эволюционно бо­лее ранним способом получения энергии, чем дыхание, однако оно энергетически менее выгодно, поскольку ко­нечными продуктами брожения являются органические вещества, богатые энергией. Существует несколько видов брожения, названия которых определяются конечными продуктами: молочнокислое, спиртовое, уксуснокислое и др. Так, в скелетных мышцах в отсутствие кислорода протекает молочнокислое брожение, в ходе которого пировиноградная кислота восстанавли­ вается до молочной кислоты.

Энергетическая эффективность молочнокислого брожения составляет две молекулыАТФ.

 

 

 

БРОЖЕНИЕ

 

Метаболизм

Обмен веществ, или метаболизм (в принципе, эти два понятия не вполне идентичны, но в учебной литературе, они рассматриваются в качестве синонимов), - это совокупность протекающих в организме химических превращений, обеспечивающих их рост, развитие, адаптацию к изменениям окружающей среды и воспроизведение. В ходе метаболизма происходит также постоянный контакт с окружающей средой и обмен с ней веществом. В процессе обмена веществ внутри организма происходит расщепление и синтез молекул, входящих в состав клеток, образование, разрушение и обновление клеточных структур и межклеточного вещества.

 

Метаболизм выполняет три специализированные функции:

Энергетическая – снабжение клетки химической энергией,

Пластическая – синтез макромолекул как строительных блоков,

Специфическая – синтез и распад биомолекул, необходимых для выполнения специфических клеточных функций.

Метаболизм включает два неразрывных процесса анаболизм и катаболизм.

 

Анаболизм

Анаболизм – это биосинтез белков, полисахаридов, липидов, нуклеиновых кислот и других макромолекул из малых молекул-предшественников. Поскольку он сопровождается усложнением структуры, то требует затрат энергии. Источником такой энергии является энергия АТФ.

 

Катаболизм

Катаболизм – расщепление и окисление сложных органических молекул до более простых конечных продуктов. Оно сопровождается высвобождением энергии, заключенной в сложной структуре веществ. Большая часть высвобожденной энергии рассеивается в виде тепла. Меньшая часть этой энергии сразу используется для синтеза АТФ.

Весь катаболизм условно подразделяется на 4 этапа:

I этап

 Гидролитический в котором из полимеров образуются мономеры. Происходит в кишечнике (переваривание пищи) или в лизосомах при расщеплении уже ненужных молекул. При этом освобождается около 1% энергии, заключенной в молекуле. Она рассеивается в виде тепла.

II этап

 Промежуточный. Превращение мономеров в пировиноградную кислоту и ацетил-КоА). Локализация второго этапа – цитозоль и митохондрии.

I I I этап

Цикл Кребса. Локализация - митохондрии

IV этап

Тканевое дыхание и окислительное фосфорилирование. Локализация - митохондрии

 

 

·

 

 

Ассимиляция (биология) — совокупность процессов синтеза в живом организме

Диссимиляция разрушение сложных органических веществ до более простых

 

 

Цикл трикарбоновых кислот.

За открытие этого цикла Ганс Кребс получил Нобелевскую премию.

Цикл Кребса это — ключевой этап дыхания всех клеток, является процессом окисления ацетилкоэнзима А –универсального продукта катаболизма углеводов, липидов и белков.

ЦТК протекает в митохондриях с участием 8 ферментов, которые локализованы в матриксе в свободном состоянии или на внутренней поверхности внутренней мембраны.

Основной функцией ЦТК является образование восстановленных кофермен-тов НАДН, которые поставляют протоны в дыхательную цепь. Кроме того, субстраты ЦТК могут использоваться для глюконеогенеза, переаминирования, синтеза гема, жирных кислот. Таким образом, ЦТК интегрирует все виды обмена веществ.

Т.О.Цикл Кребса — перекрёстная точка метаболических путей. Им заканчивается катаболизм (распад), им начинается анаболизм (синтез);

 

По сути Цикл Кребса описывает этапы превращения лимонной кислоты.

Этапы ЦТК

ацетил-коэнзима А вступает в реакцию со щавелевоуксусной кислотой, что приводит к образованию лимонной кислоты.

Лимонная кислота превращается в изолимонную.

Изолимонная кислота дегидрируется с образованием альфа-кетоглутаровой и углекислого газа.

Альфа-кетоглутаровая кислота дегидрируется с образованием сукцинил-коэнзима А и углекислого газа.

Сукцинил-коэнзим А превращается в янтарную кислоту.

Янтарная кислота дегидрируется с образованием фумаровой.

Фумаровая кислота гидратируется с образованием яблочной.

Яблочная кислота дегидрируется с образованием щавелевоуксусной. При этом цикл замыкается. В первую реакцию следующего цикла вступает новая молекула ацетил-коэнзима А.

 

 



Поделиться:


Последнее изменение этой страницы: 2021-02-07; просмотров: 463; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.223.134.29 (0.012 с.)