Эксперимент по выделению днк 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Эксперимент по выделению днк



 

У вас есть возможность самостоятельно повторить то, что делают судебно‑медицинские эксперты в телесериалах, когда выделяют ДНК из полученных образцов. В данном случае мы будем экстрагировать ДНК из банана. Это один из самых сложных экспериментов в книге, но даже если вы не решитесь его проводить, все же приятно сознавать, что вы сами можете добыть ДНК сравнительно простым способом.

Измельчите банан в блендере до состояния пюре (для этого достаточно всего несколько секунд, чтобы полученная смесь не была слишком жидкой). Смешайте в кружке одну часть жидкого средства для мытья посуды и девять частей теплой воды (скажем, 10 миллилитров средства для мытья посуды и 90 миллилитров воды). Добавьте в раствор щепотку соли. Перемешайте раствор с банановым пюре, чтобы у вас получилась однородная масса без комков, пузырей и пены.

Через кофейный фильтр отцедите из этой кашицы жидкость и поставьте ее в холодное место. Часть полученной жидкости налейте в узкую стеклянную емкость (желательно лабораторную пробирку). Уровень жидкости должен составлять пару сантиметров. Теперь аккуратно добавьте сильно охлажденный спирт, наливая его по стенке, чтобы он образовал слой поверх раствора. ДНК начнет переходить из раствора в спирт, и ее можно будет просто намотать на длинную палочку типа зубочистки.

В идеале следует использовать чистый 95‑градусный этиловый спирт. Если его не удастся добыть, подойдет и спирт для растирания. Алкогольные напитки не обладают должной чистотой. Эксперимент можно проводить не только с бананом, но и с любой другой живой субстанцией, однако банановое пюре получить проще всего. Конечно, в добытом образце будет содержаться примесь белков, но основную его массу составляет все же ДНК.

Молекула ДНК, имеющая вид двойной спирали, очень напоминает винтовую лестницу. Завитки образованы длинными нитями полимера дезоксирибозы – одного из видов сахаров, способных образовывать длинные цепи с повторяющейся последовательностью атомов. Но это лишь каркас молекулы. Самыми важными компонентами являются ступеньки этой лестницы. Каждая из них состоит из пары, образованной соединением четырех азотистых оснований – цитозина, гуанина, аденина и тимина.

 

Ваш личный код

 

Эти основания играют ту же роль, что единицы и нули в двоичном коде компьютера (разумеется, аналогия с двоичным кодом условна, потому что оснований не два, а четыре). ДНК в каждой из клеток состоит из шести миллиардов таких пар оснований. Этот код используется для хранения информации, необходимой в производстве различных белков, играющих главную роль в биологическом мире, а также других молекул, которые определяют последовательность формирования и развития организма. Вся эта система работает эффективно, потому что в образовании ступенек всегда участвуют строго определенные пары оснований. Аденин соединяется только с тимином, а цитозин – с гуанином.

Именно это попарное соединение является ключом к копированию информации. Новые клетки образуются в процессе деления старых. Каждая новая клетка должна получить свою копию ДНК. Для этого две цепи одной двойной спирали разделяются по линии соединения оснований. Хотя обе половинки не идентичны, они легко воссоздадут недостающую часть ДНК, так как основания всегда соединяются одинаково. В результате в каждой новой клетке, появившейся в процессе деления, окажется полная версия ДНК.

ДНК часто сравнивают с чертежом живого организма. У этой молекулы много дел. Посудите сами: организм начинается с одной‑единственной клетки. Она делится на две части, потом на четыре и так далее, пока не достигнет окончательной цифры – 50–70 триллионов. Разумеется, это не просто механическое увеличение количества одинаковых клеток. В противном случае вы превратились бы просто в большой однородный сгусток. Что‑то должно давать указания клеткам, чтобы они специализировались и образовывали различные органы и структуры тела. В этом и заключается задача ДНК.

И все же сравнивать ДНК с чертежом неправильно. Чертеж дает точные инструкции по строительству того или иного объекта, а ДНК не содержит всех данных, которые позволили бы в точности определить, что и как должно происходить в организме. Не существует никакой связи между количеством генов (базовых информационных кодов ДНК) и уровнем сложности живого существа. Например, рис имеет вдвое больше генов, чем человек. Конечно, это излишне упрощенный подход, в чем мы еще сможем убедиться, более детально изучая гены.

И все же лучше рассматривать ДНК как контрольную компьютерную программу на полностью автоматизированной фабрике, каковой является живой организм. ДНК не содержит всех деталей. Просто различные внешние факторы взаимодействуют с ней, в определенное время активизируя одни ее части и замедляя другие. Тем не менее, как мы увидим в главе 7, ДНК играет колоссальную роль в формировании организма.

Сорок шесть молекул ДНК в ядре клетки не единственные ДНК в организме. На самом деле есть и другие, которые можно считать своего рода пришельцами. Они родились не в человеческом организме.

 

Пришельцы в ваших клетках

 

Во внутриклеточной жидкости вокруг ядра вы можете обнаружить структуры, называемые митохондриями. Эти крошечные образования часто называют электростанциями клеток, так как их функция заключается в усвоении кислорода, получаемого в ходе дыхания (его доставляют красные кровяные клетки), и соединении его с химическими веществами пищи. В результате образуется аденозинтрифосфат (АТФ) – молекула, в которой запасается необходимая для организма энергия. Митохондрии представляют собой биохимические зарядные устройства для электрических батарей. Самое удивительное то, что раньше они, по всей видимости, были бактериями, которые впоследствии, в процессе взаимовыгодного симбиоза, стали частью клеток.

Эта теория происхождения митохондрий возникла уже довольно давно, но ее доказательство появилось лишь в 2011 году, когда в море была открыта бактерия с довольно скучным названием – SAR11, имевшая с нашей митохондрией общего предка. Сравнение генов митохондрии и SAR11 показало, что их общим предком была древняя бактерия.

Это сравнение стало возможным лишь потому, что у митохондрий есть собственная ДНК, содержащая всего 13 генов и не имеющая ничего общего с хромосомами, содержащимися в ядре клетки. В отличие от главной ДНК, которая представляет собой комбинацию генов обоих родителей, ДНК в митохондриях передается только по материнской линии. В бывшей бактерии было около тысячи генов, и раньше все они находились в ее ядре. Но со временем, когда бактерия стала митохондрией, большая часть генов, за исключением тринадцати, перешла в хромосомы.

Количество митохондрий зависит от типа клеток. Наибольшее количество (свыше тысячи) содержится в клетках печени. Хотя у митохондрий есть и другие функции, ее главная задача – накопление энергии в молекулах АТФ, которые представляют собой химический эквивалент заведенной пружины в часовом механизме.

В сжатой до предела пружине содержится большой потенциал энергии, которая при высвобождении способна приводить механизм в движение. Точно так же и митохондрия запасает энергию в АТФ. Это химическое соединение с труднопроизносимым названием содержит пару внутриатомных связей, которые соединяют атомы фосфора с единственным атомом кислорода. Эти связи относительно слабы и легко разрываются, в результате чего высвобождается энергия, приводящая в движение мышцы.

 

Чужие гены

 

Митохондрии – это не единственные пришельцы в организме человека. Ваша ДНК содержит гены по меньшей мере восьми ретровирусов. Это разновидность вирусов, использующих клеточные механизмы для кодирования ДНК и за счет этого берущие клетку под свой контроль (один из подобных вирусов, в частности, вызывает СПИД). Гены этих вирусов в ваших хромосомах в настоящее время выполняют важные функции размножения, но они абсолютно чужды человеческой ДНК.

Если когда‑то митохондрии были бактериями, то теперь они стали частью клеток организма человека. Хотя они не встречаются в простейших одноклеточных существах, но присутствуют практически во всех организмах, клетки которых имеют ядра.

Похоже, что вторжение митохондрий в чужие организмы состоялось на очень ранних стадиях развития сложных форм жизни на Земле. Однако это не единственные бактерии, живущие в вашем теле.

 



Поделиться:


Последнее изменение этой страницы: 2021-01-14; просмотров: 93; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.55.14 (0.006 с.)