Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
К вопросу об изучении величин в начальной школеСодержание книги
Поиск на нашем сайте
Автор: Р.Н. Шикова, г. Орехово-Зуево Журнал «Начальная школа» 2006г выпуск 5 https://n-shkola.ru/storage/archive/1407237212-1332344965.pdf ст. 48 Основными базисными понятиями начального курса математики являются «число» и «величина». В методико-математической литературе, используемой при подготовке учителей начальных классов, этому уделяется много внимания. Однако «подлинное происхождение и сущность этих понятий, их взаимосвязь и взаимообусловленность остаются вне сознания подавляющего большинства школьников и, к сожалению, многих учителей».
Как показывает практика, у учителя нередко наблюдается неуверенность в использовании термина величина. Грубый методический просчет допускает учитель, когда при решении задачи «Купили 5 кг моркови и 4 кг капусты. Сколько всего килограммов овощей купили?», задавая вопрос: «О каких величинах идет речь в задаче?» — соглашается с ответом ученика, что в задаче речь идет о килограммах. Килограмм — это единица величины. В задаче речь идет о массе купленных овощей.
На уроке при решении задач нередко можно услышать: «Находим величину площади», а так как площадь — это величина, то данное выражение равнозначно следующему: «Находим величину величины», что некорректно.
Автор методического пособия для учителей начальных классов на основе анализа программ и учебников различных систем обучения математике в начальной школе отмечает, что при обучении учащихся математике по некоторым системам и учебникам «...интуитивные представления детей о конкретных величинах не только не уточняются, но в определенной мере искажаются: авторы отождествляют объект и величину, характеризующую его, они также не разводят понятия величина, значение величины, числовое значение величины, смешивают физический и математический смысл величины. В результате представления учащихся о величине, полученные из учебников этого направления, могут быть противоречивыми, алогичными и формальными». И с этим нельзя не согласиться.
В связи с использованием (верным и неверным) различных терминов в практической деятельности учителей возникает желание привести трактовки величин в начальных классах в соответствие с трактовкой этих понятий в науке. Но реализация сочетания научности и доступности при увеличении объема информации, включенной в учебники математики начальных классов и подлежащей усвоению младшими школьниками, — задача не из простых, так как нужно осуществить адекватный перевод определений, алгоритмов и утверждений, сформулированных научным языком, на язык, доступный младшим школьникам. То есть при ознакомлении учащихся с тем или иным понятием нужно и научность сохранить, и доступность не потерять. Да и проблема доступности решается не только «переводом» научного языка на язык, доступный младшим школьникам.
При ознакомлении с той или иной величиной «...важно, чтобы у детей сложилось определенное представление о том, что такое величина вообще и как ее измерять. Не менее важно, чтобы представление о величинах связывалось у ученика с предметами и явлениями окружающего мира и, так же как понятие числа, понятие величины приобретало для них практическую значимость».
В начальных классах используется интуитивный подход, в соответствии с которым формируются представления о величинах как о некоторых свойствах предметов или явлений, связанных прежде всего с измерением. При формировании представления о величине большую роль играет система заданий. В процессе выполнения этих заданий, практических работ на сравнение величин и их измерение учащиеся могут получить глубокое представление о каждой величине, предусмотренной программой. Прежде всего, необходимо ознакомить учащихся со свойствами различных предметов и научить учащихся выявлять как качественные, так и количественные свойства: например, сравнить 2 кубика одинакового цвета по размеру и по массе. Сравнивая большой и маленький кубики, ученики приходят к выводу, что один из них больше по размеру, а другой больше, например, по массе. Выполняя такие упражнения, учащиеся начинают понимать, что сравнение нужно проводить по определенному свойству. При измерении тех или иных величин важно, чтобы учащиеся осознавали, что величина — это свойство предметов, по отношению к которому можно проводить сравнение и сложение.
В учебниках математики М.И. Моро и других для начальной школы введен термин величина и предлагается система упражнений, которая дает возможность сформировать у учащихся понятие величина и выработать прочные умения выполнения арифметических операций над величинами. При выполнении этих упражнений школьники усваивают, что величина — это свойство предметов, причем такое свойство, которое позволяет сравнивать и устанавливать пары объектов, обладающих свойством в равной мере, или выяснять, какой из них обладает этим свойством в большей мере. Дети осознают, что длины отрезков можно сравнивать (длиннее, короче) и складывать. При сложении отрезков получают новый отрезок, который обладает тем же свойством — имеет длину (протяженность), и часть отрезка обладает тем же свойством, т.е. часть величины является величиной того же рода.
В учебнике математики Н.Б. Истоминой предлагаются задания, которые помогут осознанному выполнению различных действий над величинами. Приведем в качестве примера некоторые из них.
Подумай, какие величины можно сложить: 3 084 м + 285 м 840 м + 120 м2 703 дм + 102 кг Какие величины можно сравнить? Сравни и поставь знак «>» или «<». 7 300 м ∗ 73 км 83 мм ∗ 8 см 335 м ∗ 32 м2 54 км ∗ 52 кг
При выполнении заданий такого типа учащиеся начинают осознавать, что складывать или сравнивать можно только однородные величины. При изучении каждой последующей темы включается ранее пройденный материал, что благоприятно сказывается на усвоении учащимися знаний, формировании умений и навыков.
Вопрос об использовании термина величина в процессе обучения решению текстовых задач требует особого внимания. Как известно, в любой задаче идет речь не менее чем о двух значениях величины, находящихся в некоторых связях и отношениях. На их основе выбирается действие, посредством которого решается задача. Эти связи и отношения бывают самыми разнообразными и довольно сложными, поэтому не только детям, но иногда и учителям трудно осознать, о каких величинах идет речь в задаче и какие связи и зависимости могут быть между ними. В связи с этим задавать вопрос: «О каких величинах идет речь в задаче?» не всегда целесообразно, так как, возможно, учащиеся еще не знают о существовании той или иной величины.
Поясним сказанное на примере решения задачи: «Сколько лошадей заменит одинбольшегрузный самосвал, если он берет25 т груза и движется со скоростью 20 км/ч, а лошадь берет 500 кг груза и движется со скоростью 10 км/ч?».
На вопрос: «О каких величинах идет речь в данной задаче?» учащиеся отвечают, что в задаче речь идет о массе и скорости. Однако что можно найти по этим данным и какая зависимость существует между скоростью и массой перевозимого груза за один рейс, определить учащимся крайне трудно. (Если груз перевозится на далекое расстояние, то сравнивать просто нет смысла — задача нереальна.)
Что же можно найти по этим данным? Математики и физики скажут, что это формула кинетической энергии, в которой используются величины скорость и масса, но это не приводит к решению задачи. На самом деле в задаче идет речь о работе и мощности. При решении используется формула мощности. Но в начальных классах ознакомление с этими формулами не предусмотрено программой.
Учителя подводят учеников к решению задачи на основе сравнения массы перевозимых грузов, затем — скорости, и решение принимает вид: 1) 25 000: 500 = 50 (раз); 2) 20: 10 = 2 (раза); 3) 50 * 2 = 100 (лошадей). Однако смысл последнего выполняемого действия в решении задачи трудно доходит до сознания учащихся. Для осознанного решения учащиеся должны усвоить основные понятия, связанные с той или иной ситуацией, и установить взаимосвязь между величинами, входящими в задачу. На данном этапе обучения это сделать слишком трудно, а может быть, и невозможно. Задача приведена в качестве примера, позволяющего осознать, что вопрос: «О каких величинах идет речь в задаче?» нужно использовать крайне осторожно. Трудно не согласиться с мнением многих учителей математики о целесообразности включения этой задачи в обучение детей старшего возраста.
В последнее время в некоторых альтернативных программах используется термин решение задач на процессы (вместо — задачи на работу, на движение и т.п.). Поэтому при решении задач иногда можно услышать и такие вопросы: «Что можно узнать, если известны скорость процесса и его результат?», «Как найти результат процесса, если известны скорость и время процесса?»
Действительно, в некоторых задачах на движение, на покупку и т.п. описываются процессы, которые характеризуются системой из трех величин, связь между которыми осуществляется с помощью одного и того же равенства вида: а = b с, (b = а: с, с = а: b).
Опора на формулы помогает учащимся находить ответ задачи и подготавливает их к решению задач с помощью уравнений в старших классах. Но излишнее увлечение формулами в младших классах приводит к формальному пониманию хода решения. Поэтому во многих методических пособиях рекомендуется использовать формулы в качестве вывода, но не основы решения задач, так как решение по готовым формулам оказывает негативное влияние на развитие словесно-логического мышления, на формирование общего умения решать задачи у младших школьников.
Поясним сказанное на примере решения задачи: «Пешеход за 3 часа проходит 15 км. Сколько километров он пройдет за 2 часа?»
О каких величинах идет речь? В задаче речь идет о расстоянии и времени, затраченном на его прохождение. И что же можно найти по этим данным?
Зная формулы s = v t; v = s: t; t = s: v, ученик может найти скорость, время и расстояние, но, как правило, не может объяснить, что находят, если время делят на расстояние (t: s). Чаще всего на вопрос: «Что можно найти, если время разделить на расстояние?» учащиеся отвечают, что нельзя делить время на расстояние, потому что нет такой формулы. На основе анализа ситуации, описанной в задаче (на основе здравого смысла), дети понимают, что это — время, затраченное на прохождение одного километра, и объясняют выбор действия примерно так: «Чтобы пройти 15 км, пешеходу требуется 3 часа (180 минут). Тогда на прохождение 1 км ему потребуется времени в 15 раз меньше. Поэтому нужно 180 разделить на 15. Мы получим время, за которое пешеход проходит 1 км: 180: 15 = 12 (мин)». Так как 2 ч = = 120 мин, нетрудно найти и ответ на вопрос задачи: 120: 12 = 10 (км).
«...не надо разучивать алгоритмы решения задач того или иного типа, но и не следует отказываться от обобщения решения нескольких задач в тот или иной метод (алгоритм, правило) решения задач определенного типа»1, так как каждый тип задач имеет свои особенности.
Вопрос о целесообразности использования термина величина при решении задач определяется учителем. Если дети еще не знакомы с той или иной величиной, входящей в задачу, то можно спросить: «О чем говорится в задаче?», «Что обозначают те или иные данные?», «Что можно найти по этим данным?» и т.п. Эти вопросы доступны и понятны учащимся. Но прежде чем задавать вопросы в ходе обучения решению задач с использованием термина величина, учащихся нужно тщательно подготовить к его восприятию.
Многие величины измеряются единицами, связанными с десятичной системой счисления. При сравнении единиц измерения видно, что таблица единиц длины повторяет построение десятичной системы счисления, и только после рассмотрения метра происходит отклонение от построения системы счисления — вводится новая единица длины — 1 километр.
За разъяснением обратимся к литературе, в которой поясняется, что главное достоинство метрической системы мер — тесная связь с десятичной системой счисления (единицы измерения делятся на 10, 100, 1 000 и т.д. равных частей). За основную единицу длины в метрической системе мер принят метр, а за основную единицу массы — грамм. Остальные единицы длины и массы получают из основных единиц увеличением или уменьшением их в 10, 100, 1 000 и т.д. раз. Наименования этих единиц образуются с помощью приставок. При уменьшении единицы в 10 раз применяют приставку «деци», в 100 раз — «санти», в 1 000 раз — «мили». При увеличении единицы в 10 раз применяют приставку «дека», в 100 раз — «гекто», в 1 000 раз — «кило».
Опираясь на такую информацию, можно объяснить, что при уменьшении метра в 100 раз получаем новую единицу длины — сантиметр, а при уменьшении в 10 раз — дециметр. При увеличении метра в 10 раз получаем новую единицу длины — декаметр, в 100 раз — гектометр, в 1 000 раз — километр. В большинстве практических расчетов такие единицы длины, как декаметр и гектометр, не используются, но при измерении площади они находят свое отражение: часто употребляются единицы площади ар и гектар. Квадрат, длина стороны которого равна 10 м (декаметр), — это ар. Слово «ар» при числах сокращенно записывается а. 1а = 100 м2, поэтому называют соткой. Квадрат, длина стороны которого равна 100 м (гектометр), называют гектаром. Слово «гектар» сокращенно записывают при числах га. 1 га = 100 а.
Следует отметить, что в учебнике математики уделено должное внимание этим единицам площади (ар, гектар) наряду с ознакомлением учащихся со стандартными единицами площади (квадратный сантиметр, квадратный дециметр, квадратный метр, квадратный километр). Предлагаются текстовые задачи, упражнения, направленные на усвоение единиц площади, соотношений между ними и выполнение арифметических действий с величинами. Приведем в качестве примера одну из задач: «Для дачных участков выделили участок земли площадью 56 га 40 а. Сколько получится участков, если площадь каждого будет по 10 соток?» При решении таких задач учащиеся получают представление о единицах площади, часто употребляемых в практической деятельности людей, и закрепляют знания о соотношениях между ними. Это помогает ученикам осознавать практическую значимость изучаемых понятий, переводить житейские понятия на язык математики.
На уроках математики ученики должны чаще слышать вопросы с использованием термина величина и названий величин. Это окажет положительное воздействие на формирование представлений о величине, будет способствовать расширению кругозора и словарного запаса младших школьников и, кроме того, явится хорошей подготовительной работой к изучению величин в старших классах.
Выполнение такой работы требует от учителя глубоких знаний и тщательной подготовки. Ему следует продумывать, какие затруднения могут возникнуть у учащихся при изучении той или иной темы и какие приемы и методы целесообразно использовать для преодоления этих затруднений. Но учителю самому нужна методическая помощь — разработки и рекомендации, которые он мог бы использовать при подготовке к уроку и которые помогли бы ему сохранить уверенность, так необходимую для плодотворной работы.
|
||||
Последнее изменение этой страницы: 2021-01-08; просмотров: 190; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.40.239 (0.01 с.) |