Скорости, подлежащие рассмотрению 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Скорости, подлежащие рассмотрению



 

6.3.5 Для каждого поезда, указанного в задании, следует рассматривать ряд значений скоростей от 120 км/ч до расчетной максимальной скорости. Расчетную максимальную скорость следует принимать на 20% выше проектной максимальной скорости на соответствующем участке магистрали [кроме расчетов комфортности и выносливости (см. 6.4.16 и 6.5.4.6)]. При выполнении динамических расчетов для проверок комфортности и выносливости за верхний предел скоростей принимают проектную максимальную скорость на участке.

6.3.6 Шаг изменения скоростей при расчетах должен устанавливаться таким образом, чтобы исключить вероятность пропуска зон резонанса и занижения пиковых значений амплитуд, скоростей и ускорений. В связи со значительным объемом вычислений шаг изменения скоростей может назначаться переменным. В области резонансных скоростей следует уменьшать шаг рассматриваемых скоростей. Порядок определения резонансных скоростей для балочных разрезных пролетных строений приведен в приложении Б.

 

Демпфирование конструкции

 

6.3.7 Величина пикового отклика конструкции зависит от демпфирования. Для несущих конструкций пролетных строений следует использовать нижние предельные значения коэффициентов демпфирования, приведенные в таблице 6.3.

 

Таблица 6.3 - Демпфирование несущих конструкций пролетных строений

 

Тип пролетного строения

Нижнее предельное значение , % от критического демпфирования

L < 20 м  м
Стальные и сталежелезобетонные
Железобетонные предварительно напряженные
Балки из обычного железобетона и с бетонным наполнителем

 

При применении специальных конструктивных решений или устройств, повышающих демпфирующие свойства конструкции или ее элементов, коэффициенты демпфирования могут быть приняты отличными от приведенных в таблице 6.3. Использование в расчетах таких коэффициентов должно быть подтверждено результатами исследований.

Для балочных разрезных пролетных строений длиной менее 30 м при расчетах по методике А в соответствии с 6.3.10 должно быть учтено дополнительное демпфирование (приложение И).

Примечание - В настоящем своде правил используется коэффициент демпфирования (затухания) , удобство которого для описания затухающих колебаний состоит в том, что при критическом значении  движение теряет колебательный характер (становится апериодическим).

Существуют и другие коэффициенты, характеризующие затухание колебаний: коэффициент неупругого сопротивления  и логарифмический декремент затухания .

Преимущество логарифмического декремента затухания заключается в его наглядности - он определяется как натуральный логарифм отношения двух последовательных амплитуд одного знака:

 

.

 

Эти три коэффициента связаны соотношениями:

 

 и .

 

Массы элементов конструкции

 

6.3.8 При формировании динамической модели сооружения следует уделять особое внимание массовым характеристикам элементов.

При выполнении динамических расчетов следует рассматривать две расчетные модели: с минимально возможной и максимально возможной массами конструкций (включая массу мостового полотна, элементов контактной сети, коммуникаций, шумозащитных экранов, а также других конструкций, которые могут быть расположены на пролетном строении):

- случай минимальной массы - для оценки максимальных ускорений;

- случай максимальной массы - для прогнозирования самых низких резонансных скоростей.

Примечания

1 Максимальные динамические эффекты, как правило, возникают на резонансных пиках на определенных скоростях, когда совпадают кратные значения частоты возбуждения и собственных частот конструкции или поезда. Вследствие резкого изменения значений (градиентов) амплитуд, скоростей и ускорений в зонах резонанса, даже незначительные отклонения параметров модели от реально возможных (в том числе и необоснованные "запасы") могут привести к серьезным ошибкам как в сторону недооценки этих факторов, так и к неоправданной их переоценке и, как следствие, к перерасходу материалов и увеличению стоимости сооружения.

Недооценка массы приводит к завышению частот конструкции и, соответственно, скоростей поезда, на которых происходит резонанс.

С другой стороны, максимальное ускорение конструкции в зоне резонанса обратно пропорционально массе. Переоценка массы может привести к заниженной оценке частот и ускорений.

Поэтому при формировании расчетной модели следует уделять особое внимание корректному назначению масс и жесткостей конструктивных элементов сооружения. Следует рассматривать не фиксированные значения этих характеристик и скоростей движения, а возможные диапазоны их изменения.

2 При определении минимальной массы балласта следует полагать, что толщина балласта минимальна, и он находится в сухом чистом состоянии. Плотность балласта может быть принята равной 1700 .

3 При назначении максимальной массы балласта следует исходить из допусков на возможный подъем пути и принимать, что балласт имеет максимальную степень уплотнения, находится во влажном состоянии, а степень его загрязнения достигла предельно допустимого значения при эксплуатации.

4 Назначение максимальных и минимальных масс конструкций производится в каждом конкретном случае исходя из условия движения по сооружению высокоскоростной нагрузки без ограничения скорости (не следует рассматривать случаи ремонта или путевых работ).

5 Если массовые характеристики основных конструкций принимают по таблицам спецификаций рабочих чертежей, вариативность масс стальных конструкций допускается не учитывать, а железобетонных - учитывать коэффициентами 1,02 и 0,98 (максимальные и минимальные соответственно), в других случаях принимают 1,05 и 0,95 для стальных и бетонных элементов.

 

Жесткость конструкции

 

6.3.9 При выполнении динамических расчетов в расчетных моделях конструкций следует учитывать как верхние, так и нижние оценки жесткости элементов. Жесткости следует определять в предположении упругой работы элементов.

Примечания

1 Переоценка жесткости конструкции приводит к завышению собственных частот конструкции, смещению резонансных пиков и, соответственно, завышению скоростей поезда, на которых происходит резонанс.

2 Неоправданное (неаргументированное) занижение жесткости может привести к перерасходу материалов и, как следствие, увеличению стоимости сооружения.

3 Возможные отклонения жесткости реальной конструкции от жесткости расчетной модели назначаются в каждом конкретном случае, исходя из особенностей конструкции (число элементов и соединений, массивность сечений и другие соображения).

4 При определении жесткости железобетонных элементов сечения следует полагать, что все потери прошли (усадка, ползучесть, потери предварительного натяжения), а ширина раскрытия нормальных трещин не превышают допустимые значения (для оценки минимальной жесткости обычного железобетона).

 



Поделиться:


Последнее изменение этой страницы: 2021-01-14; просмотров: 83; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.134.90.44 (0.006 с.)