Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Обучение нейрона детектированию границы «черное-белое»Содержание книги
Поиск на нашем сайте
Способность формального нейрона к обучению проявляется в возможности изменения значений вектора весов W, соответствующей пластичности синапсов биологических нейронов. Пусть имеется образ, составленный из одномерной цепочки черных и белых клеток. Зачерненные клетки соответствуют единичному сигналу, а белые клетки - нулевому. Сигнал на входах формального нейрона устанавливается равным значениям пар примыкающих клеток рассматриваемого образа. Нейрон обучается всякий раз возбуждаться и выдавать единичный выходной сигнал, если его первый вход соединен с белой клеткой, а второй (правый) - с черной. Таким образом, нейрон должен служить детектором границы перехода от светлого к темному тону образа.
Формальный нейрон с двумя входами, занятый обработкой образа в виде одномерной цепочки черных и белых клеток. Функция, выполняемая нейроном, определяется следующей таблицей:
Классификация нейронных сетей . по типу входной информации: Аналоговые нейронные сети (используют информацию в форме действительных чисел); двоичные нейронные сети (оперируют с информацией, представленной в двоичном виде). II. по характеру обучения: Обучение с учителем - выходное пространство решений нейронной сети известно; Обучение без учителя - нейронная сеть формирует выходное пространство решений только на основе входных воздействий. Такие сети называют самоорганизующимися; Обучение с подкреплением - система назначения штрафов и поощрений от среды. III. по характеру настройки синапсов: Сети с фиксированными связями (весовые коэффициенты нейронной сети выбираются сразу, исходя из условий задачи, при этом: где W - весовые коэффициенты сети); сети с динамическими связями (для них в процессе обучения происходит настройка синаптических связей, то есть, где W - весовые коэффициенты сети). IV. по времени передачи сигнала: В ряде нейронных сетей активирующая функция может зависеть не только от весовых коэффициентов связей wij, но и от времени передачи импульса (сигнала) по каналам связи τij. По этому в общем виде активирующая (передающая) функция связи cij от элемента ui к элементу uj имеет вид:. Тогда синхронной сетью называют такую сеть, у которой время передачи τij каждой связи равно либо нулю, либо фиксированной постоянной τ. Асинхронной называют такую сеть у которой время передачи τij для каждой связи между элементами ui и uj свое, но тоже постоянное. V. по характеру связей: сети прямого распространения (персептрон Розенблатта и т.д.); рекуррентные нейронные сети(сеть Хопфилда, сеть Коско и т.д.)ý. Другие известные типы связей: многослойный персептрон; сеть Джордана, сеть Элмана, сеть Хэмминга, сеть Ворда, сеть Кохонена, нейронный газ, когнитрон, неокогнитрон, хаотическая нейронная сеть, осцилляторная нейронная сеть, сеть встречного распространения, RBF-сеть, сеть обобщенной регрессии, вероятностная сеть, сиамская нейронная сеть, сети адаптивного резонанса.
Персептрон Розенблатта Одной из первых искусственных сетей, способных к перцепции (восприятию) и формированию реакции на воспринятый стимул, явился PERCEPTRON Розенблатта (F.Rosenblatt, 1957). Персептрон рассматривался его автором не как конкретное техническое вычислительное устройство, а как модель работы мозга.
Элементарный персептрон Розенблатта.
Простейший классический персептрон содержит нейроподобные элементы трех типов, назначение которых в целом соответствует нейронам рефлекторной нейронной сети, рассмотренной в предыдущей лекции. S-элементы формируют сетчатку сенсорных клеток, принимающих двоичные сигналы от внешнего мира. Далее сигналы поступают в слой ассоциативных или A-элементов (для упрощения изображения часть связей от входных S-клеток к A-клеткам не показана). Только ассоциативные элементы, представляющие собой формальные нейроны, выполняют нелинейную обработку информации и имеют изменяемые веса связей. R-элементы с фиксированными весами формируют сигнал реакции персептрона на входной стимул. Представленная сеть обычно называется однослойной, так как имеет только один слой нейропроцессорных элементов. Однослойный персептрон характеризуется матрицей синаптических связей W от S- к A-элементам. Элемент матрицы отвечает связи, ведущей от i-го S-элемента к j-му A-элементу.
|
|||||||||||||||||||
Последнее изменение этой страницы: 2020-12-09; просмотров: 126; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.23.102.79 (0.006 с.) |