![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Обучение нейрона детектированию границы «черное-белое»Содержание книги
Поиск на нашем сайте
Способность формального нейрона к обучению проявляется в возможности изменения значений вектора весов W, соответствующей пластичности синапсов биологических нейронов. Пусть имеется образ, составленный из одномерной цепочки черных и белых клеток. Зачерненные клетки соответствуют единичному сигналу, а белые клетки - нулевому. Сигнал на входах формального нейрона устанавливается равным значениям пар примыкающих клеток рассматриваемого образа. Нейрон обучается всякий раз возбуждаться и выдавать единичный выходной сигнал, если его первый вход соединен с белой клеткой, а второй (правый) - с черной. Таким образом, нейрон должен служить детектором границы перехода от светлого к темному тону образа.
Формальный нейрон с двумя входами, занятый обработкой образа в виде одномерной цепочки черных и белых клеток. Функция, выполняемая нейроном, определяется следующей таблицей:
Классификация нейронных сетей . по типу входной информации: Аналоговые нейронные сети (используют информацию в форме действительных чисел); двоичные нейронные сети (оперируют с информацией, представленной в двоичном виде). II. по характеру обучения: Обучение с учителем - выходное пространство решений нейронной сети известно; Обучение без учителя - нейронная сеть формирует выходное пространство решений только на основе входных воздействий. Такие сети называют самоорганизующимися; Обучение с подкреплением - система назначения штрафов и поощрений от среды. III. по характеру настройки синапсов: Сети с фиксированными связями (весовые коэффициенты нейронной сети выбираются сразу, исходя из условий задачи, при этом: где W - весовые коэффициенты сети); сети с динамическими связями (для них в процессе обучения происходит настройка синаптических связей, то есть, где W - весовые коэффициенты сети). IV. по времени передачи сигнала: В ряде нейронных сетей активирующая функция может зависеть не только от весовых коэффициентов связей wij, но и от времени передачи импульса (сигнала) по каналам связи τij. По этому в общем виде активирующая (передающая) функция связи cij от элемента ui к элементу uj имеет вид:. Тогда синхронной сетью называют такую сеть, у которой время передачи τij каждой связи равно либо нулю, либо фиксированной постоянной τ. Асинхронной называют такую сеть у которой время передачи τij для каждой связи между элементами ui и uj свое, но тоже постоянное.
V. по характеру связей: сети прямого распространения (персептрон Розенблатта и т.д.); рекуррентные нейронные сети(сеть Хопфилда, сеть Коско и т.д.)ý. Другие известные типы связей: многослойный персептрон; сеть Джордана, сеть Элмана, сеть Хэмминга, сеть Ворда, сеть Кохонена, нейронный газ, когнитрон, неокогнитрон, хаотическая нейронная сеть, осцилляторная нейронная сеть, сеть встречного распространения, RBF-сеть, сеть обобщенной регрессии, вероятностная сеть, сиамская нейронная сеть, сети адаптивного резонанса.
Персептрон Розенблатта Одной из первых искусственных сетей, способных к перцепции (восприятию) и формированию реакции на воспринятый стимул, явился PERCEPTRON Розенблатта (F.Rosenblatt, 1957). Персептрон рассматривался его автором не как конкретное техническое вычислительное устройство, а как модель работы мозга.
Элементарный персептрон Розенблатта.
Простейший классический персептрон содержит нейроподобные элементы трех типов, назначение которых в целом соответствует нейронам рефлекторной нейронной сети, рассмотренной в предыдущей лекции. S-элементы формируют сетчатку сенсорных клеток, принимающих двоичные сигналы от внешнего мира. Далее сигналы поступают в слой ассоциативных или A-элементов (для упрощения изображения часть связей от входных S-клеток к A-клеткам не показана). Только ассоциативные элементы, представляющие собой формальные нейроны, выполняют нелинейную обработку информации и имеют изменяемые веса связей. R-элементы с фиксированными весами формируют сигнал реакции персептрона на входной стимул. Представленная сеть обычно называется однослойной, так как имеет только один слой нейропроцессорных элементов. Однослойный персептрон характеризуется матрицей синаптических связей W от S- к A-элементам. Элемент матрицы
|
||||||||||||||||||||
Последнее изменение этой страницы: 2020-12-09; просмотров: 130; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.37.229 (0.009 с.) |