Генетика как наука. Основные генетические понятия. Связь с другими науками. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Генетика как наука. Основные генетические понятия. Связь с другими науками.



Генетика как наука. Основные генетические понятия. Связь с другими науками.

Генетика, как самостоятельная наука выделилась из биологии в 1900 году. Термин генетика введён в 1906 году. Генетика – наука об изменчивости и наследственности. Вет. генетика – наука, изучающ. наследственные аномалии и болезни с наследственным предрасположением, разрабатывающая методы диагностики, генетической профилактики и селекции, животных на устойчивость к болезням. Задачи: 1. Изучение наследственных аномалий. 2. Разработка методов выявления гетерозиготных носителей наследственных аномалий. 3. Контролирование (мониторинг) распространения вредных генов в популяциях. 4. Цитогенетический анализ животных в связи с заболеваниями. 5. Изучение генетики иммунитета. 6. Изучение генетики патогенности и вирулентности микроорганизмов, а также взаимодействие микро – и макроорганизмов. 7. Изучение болезней с наследственным предрасположением. 8. Изучение влияния вредных экологических веществ на наследственный аппарат животных. 9. Создание устойчивых к болезням, с низким генетическим грузом и приспособленных к опред-ным усл-ям среды стад, линий, типов, пород. Методы генетики: 1. Гибридологический анализ основан на использ-нии системы скрещивания в ряде поколений для определения хар-ра наследования признаков и свойств. Гибридологический анализ – основной метод генетики. Генеалогический метод заключается в использовании родословных. Для изучения закономерностей наследования признаков, в том числе наследственных болезней. Этот метод в первую очередь принимается при изучении наследственности чел-ка и медленно плодящихся животных. Цитогенетический метод служит для изучения строения хромосом, их репликации и функционирования, хромосомных перестроек и изменчивости числа хромосом. С помощью цитогенетики выявляют разные болезни и аномалии, связанные с нарушением в строении хромосом и изменение их числа. Популяционно-статический метод применяется при обработке результатов скрещиваний, изучения связи между признаками, анализе генетической стр-ры популяций и т.д. Иммуногенетический метод включают серологические методы, иммуноэлектрофорез и др., кот используют для изучения групп крови, белков и ферментов сыворотки крови тканей. С его помощью можно установить иммунологическую несовместимость, выявить иммунодефициты, мозаицизм близнецов и т.д. Онтогенетический метод используют для анализа действия и проявление генов в онтогенезе при различных условиях среды. Для изучения явлений наследственности и изменчивости используют биохимический, физиологический и другие методы. Практическое значение большое значение имеют теоретические исследования по проблемам инженерии в селекции растений, микроорганизмов и животных, разработке более эффективных методов и средств предупреждения болезней и лечения животных. Фундаментальные открытия в современной генетике реализуются в селекции растений, животных и микроорганизмов. Методы генетической инженерии широко применяются в биотехнологии. В животноводстве методы генетики используют: 1. При выведению линий и пород животных, устойчивость к болезням. 2. Для уточнения происхождения животных. 3. При цитогенетической аттестации производителей. 4. Для изучения влияния экологически вредных веществ на наследственный препарат животных.

 

Законы наследственноси.

Г. Мендель впервые целенаправленно занялся изучением проблем наследственности. Можно назвать несколько причин успеха его исследований. Первая из них заключалась в строгом и точном подборе объекта для опытов – растения, которое соответствовало бы поставленным экспериментатором задачам. Г. Мендель остановил свой выбор на горохе – растение неприхотливое, плодовитое, известно много сортов, четко различающихся по качественным признакам; наконец, горох – строгий самоопылитель, не будет риска заноса посторонней пыльцы во время опытов.

Во-вторых, Г. Мендель сознательно концентрирует свое внимание не на всем комплексе различий между скрещиваемыми сортами, а на отдельных элементарных, альтернативно различающихся признаках, удобных для объективного учета. Г. Мендель ставит опыты от простого к сложному: сначала рассматривает одну пару признаков, затем две и т.д. При этом учитывает всех потомков от скрещивания, а не отдельные выбранные экземпляры. Таким образом, вторым слагаемым успеха является научно спланированные эксперименты.

Наконец, третья отличительная черта работы Г. Менделя – логическая четкость мышления, последовательное применение вероятностно-статистических соображений при обработке результатов опытов.

В результате многочисленных экспериментов Г. Мендель сформулировал закономерности, которые его последователи возвели в ранг законов.

1. Единообразие гибридов первого поколения, проявляются доминантные признаки

2. При скрещивании гибридов первого поколения во втором поколении будет наблюдаться расщепление по фенотипу 3:1 по каждой паре признаков (рис. 28).

3. Закон чистоты гамет (половые клетки) или закон независимого расщепления.

Открытие Г. Менделем закономерностей расщепления признаков показало, что возникающие у организмов рецессивные мутации не исчезают, а сохраняются в популяциях в гетерозиготном (греч. heteros иной, другой; zygote соединенная в пару – неоднородность наследственной основы организма) состоянии.

 

Классификация наследственных признаков:

1. Рецессивные (recessus отступление) – исчезают у гибридов первого поколения, являются подавленными, но могут проявиться в ряду других поколений

2. Доминантный (лат. dominantis господствующий) – преобладающий у потомства.

 

Генотипы

Типы гамет

При нарушении течения митоза или мейоза могут образовываться особи-гинандоморфы. Содержание половых хромосом в разных клетках таких особей может быть разное (мозаичное). Случаи мозаицизма: ХХ/ХХХ, XY/XXX; XO/XXY и др.

При не расхождении половых хромосом в гаметогенезе возможны их комбинации, что является причиной хромосомных аббераций у человека.

♀ ♂ Х ХХ О
X XX XXX XO
Y XY XXY YO
XY XXY XXXY XYO
O XO XX O

В случае нерасхождения половых хромосом при мейозе образуются гаметы ХХ и О у самок, а так же ХY и О - у самцов. При участии их в оплодотворении формируются зиготы с необычным сочетанием половых хромосом. У человека такие аномалии встречаются 1 на 600-700 новорожденных. Зигота погибает на ранней стадии; особи ХХХ, ХХY, ХО – жизнеспособны. Избыток Х -хромосом вызывает конституциональные аномалии и дефекты интеллекта.

Но в природе встречаются особи, у которых Y хромосома генетически инертна и не оказывает особого влияния на определение пола. Так у дрозофилы обнаружены особи типа ХО, которые были самцами, но бесплодны, а особи ХХY - нормальные плодовитые самки.

Балансовая теория пола (Бриджес, 1922).

Суть балансовой теории в том, что в определении пола принимают участие не только половые хромосомы, но и аутосомы. Один гаплоидный набор аутосом сообщает особи свойства мужского пола. В данном случае пол определяется соотношением количества (балансом) аутосом и половых хромосом.

Гены женского организма сосредоточены в Х -хромосомах, мужского – в аутосомах (А).

В норме:

· самки имеют баланс 2Х: 2А=1

· самцы – 1Х: 2А=0,5.

Нормальный баланс половых хромосом и аутосом у человека:

· женщин – ХХ: 44А.

· мужчин – ХY: 44А. (1х: 2А)

Нарушения:

ХО: 44А. – моносомия у женщин.

ХХХ: 44А. – трисомия у женщин.

ХХY, ХХХY: 44А. – синдром Кляйнфельтера (мужской фенотип)

ХYY: 44А. (2х: 2А) – полисомия по Y.

В результате неправильного расхождения хромосом в мейозе иногда возникают гаметы с необычным числом половых хромосом. Например, при образовании гамет самками дрозофил в одну из гамет могут попасть обе X-хромосомы, а в другую ни одной. Такие самки при скрещивании с обычными самцами дают потомков с необычными генотипами XXX и XXY. Какой же пол имеют эти мухи и мухи с другими необычными генотипами? Изучая этот вопрос, К.Бриджес в 1921 г. показал, что особи с генотипом XXY - самки, а особи с генотипами XXX - "сверхсамки" с необычно сильно развитыми яичниками. Бриджэс предположил, что у дрозофил пол определяется соотношением (балансом; почему эта теория и получила название балансовой теории определения пола) числа половых хромосом и аутосом. По предположению Бриджэса, Y-хромосома у дрозофил фактически не играет роли в определении пола. Например, если мухи имеют генотип 2A+2Х (диплоидный набор аутосом и две Х-хромосомы), так что одна Х-хромосома приходится на один гаплоидный набор аутосом, то это самка. Другие соотношения видны из табл. 128: Бриджэс получил также мух с генотипом ЗA+X, у которых отношение числа половых хромосом к числу аутосом равно 1/3, т.е. еще меньше, чем у нормальных самцов. Из таких зигот развивались сверхсамцы.

Таким образом, фактически было показано, что развитие пола у дрозофил зависит от того, в каком соотношении вырабатываются белки, кодируемые аутосомами и Х-хромосомами. На аутосомах и Х-хромосоме найдены гены, кодирующие эти белки-определители пола. Как известно, пол и у человека, и у дрозофил, определяется половыми хромосомами (женщина имеет генотип XX, мужчина - XY). Однако сравнение людей и дрозофил с необычным числом половых хромосом показало, что в действительности механизм определения пола у них различен (табл. 129).

У человека главным фактором, влияющим на определение пола, является наличие У-хромосомы. Если она есть, организм имеет мужской пол. Даже если в геноме имеются три или четыре Х-хромосомы, но кроме того хотя бы одна Y-хромосома, то из такой зиготы развивается мужчина. Почему же Y-хромосома играет столь разную роль у дрозофил и у человека? Дело в том, что у дрозофил в Y-хромосоме очень мало генов, и это гены, которые отвечают за развитие сперматозоидов у взрослого самца. Напротив, у человека в коротком плече Y-хромосомы лежит ген S, который играет важнейую роль в определении пола. Он кодирует белок, который переключает организм с женского пути развития на мужской. Этот ген играет определяющую роль и у других млекопитающих. Когда с помощью генной нженерии ген S ввели в клетку мыши с женским генотипом XX, то из такой клетки развился мышонок не только с внешними признаками самца, но и с соответствующим поведением.

 

Генные мутации

Мутация – стойкое изменение в ДНК и кариотипе особи.

Генная мутация – изменение отдельных нуклеотидов внутри гена. Может быть потеря, вставка, замена одного на другой или перенос на другое место, переворот нескольких нуклеотидов на 180º. Нуклеотид, затронутый мутацией – сайт. 5 типов (синтез белка): 1) гипоморфные – мутантный ген уменьшает синтез белка, 2) гиперморфные – увеличивает синтез белка, 3) аморфные – прекращает синтез белка, 4) неаморфные – синтезирует новый белок, 5) антиморфные – сиртезирует фермент, тормозящий синтез исходного белка. 3 вида (транскрипция): 1) миссенсмутация – замена нуклеотида в триплете заменяет аминокислоту в белке. 2) нонсенс –

Хромосомные мутации

Мутация – стойкое изменение в ДНК и кариотипе особи.

Хромосомная мутация – изменение формы, размера хром-мы, порядка расположения генов в ней. Могут быть сбалансированными (нет утраты или избытка генетического материала, они не проявляются фенотипически) и несбалансированными. Виды: внутрихромосомная (дупликация – в рез-те неравного кроссинговера в гомологичных хром-мах происходит удвоение участка одной хром-мы из пары - выживание; фрагментация – разрыв хром-мы на куски – летальный; инверсия – переворот участка хром-мы на 180º - не влияет на жизнеспособность; нехватки- потеря участка хромосомы: а) делеции – выпадение внутреннего участка, б) дефишенции – потеря конца хром-м – более 2% летально) и межхромосомная – транслокация – перемещение участка из одной хром-мы в другую, ей негомологичную (а) если обмен взаимный – транслокация реципрокная,б) если не взаимный – транспозиция, в) если 2 одноплечие хром-мы сливаются в области центромера, образуют одну равноплечую, то это транслокация Робертсона – эмбриональная смертность).

Геномные мутации.

Мутация – стойкое изменение в ДНК и кариотипе особи.

Генная мутация – изменение отдельных нуклеотидов внутри гена. Может быть потеря, вставка, замена одного на другой или перенос на другое место, переворот нескольких нуклеотидов на 180º. Нуклеотид, затронутый мутацией – сайт. 5 типов (синтез белка): 1) гипоморфные – мутантный ген уменьшает синтез белка, 2) гиперморфные – увеличивает синтез белка, 3) аморфные – прекращает синтез белка, 4) неаморфные – синтезирует новый белок, 5) антиморфные – сиртезирует фермент, тормозящий синтез исходного белка. 3 вида (транскрипция): 1) миссенсмутация – замена нуклеотида в триплете заменяет аминокислоту в белке. 2) нонсенс – замена нуклеотида превращает триплет в терминатор. 3) мутация сдвига рамки чтения – вставка или выпадение нуклеотида изменяет аминокислотный состав белка.

 

Клеточный цикл.

Клеточный цикл — это жизнь клетки от одного деления до другого. Про клетки, которые делиться больше не будут, обычно говорят, что они вышли из клеточного цикла. Продолжительность клеточного цикла у бактерий может составлять всего 20–30 мин, а у клеток эукариот цикл обычно длится не менее 10–12 ч, часто сутки и более. Исключение составляют быстро делящиеся клетки самых ранних зародышей, весь цикл у них может проходить за 15—20 мин. Клетки взрослых многоклеточных организмов, как животных, так и растений, обладают разной способностью к делению. В одних тканях, например нервной, мышечной, клетки вообще не делятся. Другие ткани, напротив, постоянно обновляются. В этом случае существуют группы клеток, которые постоянно делятся, т. е. находятся в клеточном цикле, а их потомки перестают делиться, некоторое время функционируют и отмирают. Так происходит с клетками крови (делящиеся клетки находятся в костном мозге, а зрелые выходят в кровь), кожи, кишечника, в проводящей системе растений. Выход клеток из цикла может быть необратимым, но многие клетки, не размножающиеся в обычных условиях, могут приобрести эту способность вновь. Клетки печени, например, в норме почти не делятся, но после удаления части органа вступают в клеточный цикл и делятся один-два раза. Клетки коры некоторых многолетних растений способны, начав делиться, восстанавливать механические повреждения коры (см. Регенерация). Клеточный цикл состоит из двух фаз — собственно деления клетки (митоза) и промежутка между делениями — интерфазы. В свою очередь, митоз и интерфаза подразделяются на ряд периодов. Ключевой стадией интерфазы, после которой возможно деление клетки, является так называемый синтетический период (S-период) — промежуток времени, когда удваивается ДНК ядра. (Интересно отметить, что удвоение ДНК митохондрий и хлоропластов может не совпадать по времени с S-периодом — оно происходит независимо от ядра.) В большинстве случаев между предыдущим делением и началом S-периода существует промежуток времени G1-период (от английского слова gap — промежуток, пауза). По окончании синтеза ядерной ДНК деление начинается не сразу, а после G2-периода (вторая пауза). На самом деле никаких пауз в жизни делящихся клеток нет. Дело в том, что в течение клеточного цикла (а более 90% продолжительности его падает на интерфазу) объем клетки должен увеличиться примерно вдвое, с тем чтобы размеры дочерних клеток соответствовали размерам материнской. Поэтому в размножающихся клетках идет довольно интенсивный синтез РНК и белков. Он начинается сразу после митоза, в G1-периоде, затем усиливается в S-пeриоде и достигает максимальной интенсивности в середине G2-периода. Во время митоза синтез РНК прекращается полностью, а синтез белка составляет не более 1/4 от интерфазного уровня. Выход клеток из цикла происходит в естественных условиях сразу после митоза: вместо G1-периода они вступают в так называемый G0-период, или состояние покоя, хотя этот покой относителен. G0-период — это время выполнения клеткой ее специализированных функций. Возвращение клеток в цикл (если оно возможно) начинается со вступления их под действием стимулирующих агентов в G1-пeриод, и лишь затем начинается синтез ядерной ДНК. Таким образом, очевидно, что в G1-периоде происходят определенные подготовительные процессы для вступления в S-пeриод. Установлено, что для прохождения клеткой цикла необходимо последовательное включение определенных генов. Синтез белков, обеспечивающих каждую стадию цикла, осуществляется чаще всего заранее — в G1-пeриоде синтезируются белки, участвующие в синтезе ДНК; в G2-периоде — белки, необходимые для митоза и начала следующего, G1-периода, и т. д.

Митоз.

Обеспечивает равномерное распределение хроматина между дочерними клетками. Митоз состоит из кариогенеза – деление ядра, цитогенеза – деление цитоплазмы. Выделяют 2 основные стадии: интерфаза и собственный митоз. В интерфазе происходит накопление белка, РНК и других продуктов; синтезируется ДНК и происходит самоудвоение хромосом; продолжается синтез ДНК и белков и накапливается энергия. Профаза – хромосомы – клубок длинных тонких хроматиновых нитей, разрушается ядрышко, нити веретена прикрепляются к центриолям, которые разделились и находятся на противоположных полюсах клетки, ядерная оболочка клетки разруш-ся. Метафаза (материнская звезда) – утолщение, спирализация хромосом, перемещение их в экваториальную полость клетки. Анафаза (дочерняя звезда) – разделение, удвоение хромосом на хроматиды, которые расходятся к противоположным полюсам клетки. Телофаза – сестринские хроматиды достигают противоположных полюсов и деспирализуются – 2 дочерних ядра, происходит деление цитоплазмы, образование оболочек клеток. Значение: точное распределение хромосом между 2 дочерними клетками; сохраняется преемственность хромосомного набора в ряду клеточных поколений и полноценность генетической информации каждой клетки.

 

Мейоз

Это способ образования половых клеток. Сначала идёт интерфаза, т.е. перед делением каждая хромосома состоит из сестринских хроматид. Он сост из 2 делений: редукционное (уменьшительное) и эквационное (уравнительное). Профаза сильно растянута во времени. 1. лептонема – кажд хромосома сост. из 2 сестринских хроматид и наз-ся моновалент. Хромосомы деспирализованы. 2. зигонема – гомологичные хромосомы начин-ют сливаться – конъюгация. 3. пахинема – конъюгация заверш-ся, т.е. парные хром-мы соед-ся по всей длине – синопсис. Соединённые в пары хром-мы – биваленты (2 моновалента, 4 хроматида). Начин-ся кроссинговер в результате изменения последовательности генов. 4. диплонема – хром-мы отталкиваются др от друга, но удерживаются вместе за счёт перекрёста, образуют хиазму. 5. диагенез – хром-мы спирализуются, хиазмы исчезают, формир-ся веретено деления, растворяются ядрышки и яд оболочка, бивалент оказывается в цитоплазме. Метафаза – биваленты выстраиваются по экватору клетки и прикрепляются центромерами к нитям веретена деления. Анафаза – биваленты распадаются на моноваленты, кот по нитям веретена скользят к противоположным полюсам клетки. Телофаза – достигнув полюсов, моноваленты окружают себя яд оболочкой, образ-ся 2 ядра с гаплоидным набором хромосом. Но кажд хром-ма сост из 2 сестринск хроматид. После первого деления следует короткая фаза покоя – интергенез. После этого клетка вступает в эквационное деление. Оно идёт по типу митоза, т.е. в анафазе к полюсам клетки расходятся хроматиды. В рез-те двух делений из одной материнской клетки с диплоидным набором образ-ся 4 дочерние с гаплоидным набором хром-м. Значение: образ-ся гаметы с гаплоидным набором хром-м, возрастает комбинативная изменчивость у потомства (за счёт кроссинговера, за счёт независимой комбинации родительск хром-м в гаметах).

 

Таким образом, ген стали считать чем-то вроде атома наследственности, правда, довольно скоро возникла идея о его делимости, о его сложной внутренней организации. Эти представления сформированы в России в работах А.С. Серебровского и Н.П. Дубинина, посвященных так называемому ступенчатому аллеломорфизму.

В 1926 г. А.С. Серебровский призвал отказаться от концепции неделимости гена и к воскрешению гипотезы «присутствия - отсутствия» Бэтсона. Согласно этой гипотезе, доминантность признака обусловливается присутствием определенного гена, а рецессивность - его выпадением, отсутствием. До исследований отечественных ученых гипотезу присутствия-отсутствия отвергали на основании регистрации обратных мутаций, ревертирующих мутантный фенотип к дикому, нормальному.

Отказ А.С. Серебровского от признания неделимости гена позволил преодолеть противоречия гипотезы Бэтсона с классическими данными, свидетельствующими о существовании таких мутаций, а также изящным образом объяснить явление множественного аллеломорфизма как следствие того, что в разных случаях исчезают не совсем одинаковые по величине участки хромосом. Обращает на себя внимание то, как предложенная А.С. Серебровским трактовка перекликается с современными представлениями о механизме определенного рода мутаций, заключающемся во внедрении или, напротив, утрате специфических генетических элементов, способных перемещаться по геному и названных подвижными генетическими элементами.

Действительно, многие мутации гомеозисных генов дрозофилы, в частности серии bithorax, возникают в результате внедрения этих элементов в область расположения соответствующего гена, а реверсия к норме - в результате их вырезания и удаления из данной зоны. В случае обнаруженных недавно у Drosophila melanogaster «транспозиционных взрывов» наблюдаются множественные вставки или, напротив, «вырезания» мобильных диспергированных генов из соответствующих локусов

Следует, впрочем, отметить, что обусловленность некоторых мутаций у D. melanogaster микроделециями, т.е. утратой небольших участков хроматина была установлена еще в конце 20-х годов А.А. Прокофьевой-Бельговской и Г. Мёллером при исследовании политенных хромосом слюнных желез.

Экспериментальное развитие идеи о делимости гена было дано в работах на дрозофиле А.С. Серебровского и Н.П. Дубинина на примере серии мутаций гена scute, влияющего на развитие щетинок у дрозофилы. Было установлено, что если два аллеломорфа нарушали развитие совсем разных щетинок, то в компаунде они давали возврат к норме, т.е. развивались все щетинки (например, в случае компаунда sc 5/ sc 6).

Основные выводы авторов таковы: «Явление частичного возвращения к дикому типу может быть истолковано как обусловленное не полным аллеломорфизмом двух аллеломорфов. С этой точки зрения... общие части проявляются в силу того, что в обеих хромосомах имеются изменения одинаковых участков, другими словами, по этим участкам муха гомозиготна, непроявление же несовпадающих участков зависит от того, что измененному участку одной хромосомы соответствует участок второй хромосомы, который не был затронут трансгенацией...». Это весьма ответственное воззрение, утверждающее делимость гена (трансгенацию по частям). Вместе с тем воззрение о частях гена ставило важный вопрос о взаимоположении этих частей, т.е. стало необходимым наметить предварительный план гена.

Ген scute был назван базигеном, т.е. областью хромосомы, занятой всеми изменениями - трансгенами scute. Самостоятельные элементарные участки внутри базигена были названы центрами. Предполагалось, что мутации могут затрагивать как отдельные центры, так и их группы, отсюда название сформулированной концепции - «центровая теория гена».

Эта теория была настороженно встречена многими ведущими генетиками того времени, ибо привносила крайний корпускуляризм в генетические представления, в то время как Р. Гольдшмидт, например, придерживался иных взглядов, основанных на градуализме и допускающих существование своеобразных перекрывающихся «полей действия» вдоль хромосомы как единой функциональной единицы (подобные взгляды до сих пор активно пропагандируются А. Лима-де-Фариа). Впрочем, и типичным представителям корпускулярного течения центровая теория пришлась не по душе. Т. Морган, например, отреагировал следующим образом: «Данные, приводимые в подтверждение такого толкования, пока еще не совсем убедительны.

Тем не менее, догматы о неделимости гена были поколеблены, а в последующем давление фактического материала оказалось столь велико, что от них пришлось отказаться. В 40-60-е годы имели место шесть событий, которые, пожалуй, и явились решающими для революционизирования понятия о гене и придания ему достаточно конкретного смысла.

В-четвертых, по мере развития молекулярной биологии и совершенствования ее методов, многие ее элементы проникли и в генетику, заложив основы генетики молекулярной. В 1944 г. Эйвери, Мак-Карти и Мак-Леод в Рокфеллеровском институте обнаружили, что ДНК может переносить информацию от одной бактерии к другой. При этом дезоксирибонуклеаза быстро и необратимо разрушала трансформирующую активность. Отсюда вытекало предположение, что именно ДНК является материальным носителем наследственности, так сказать, «овеществленным» геном.

В-пятых, исследования сначала в области классической, а затем и молекулярной генетики показали, что геном может быть условно подразделен на две части - «конструктивную», которая включает структурные и регуляторные гены, и «факультативную», представленную подвижными генетическими элементами, способными изменять свое положение в геноме, что может сопровождаться явлениями мутагенеза или обусловливать различные регуляторные изменения в функционировании ансамблей генов

Наконец, в-шестых, разработка методов изоляции и клонирования фрагментов ДНК, содержащих интересующие нас гены, а также методов секвенирования ДНК дало возможность как бы «заглянуть» внутрь гена, изучать его структуру в мельчайших деталях и понять в какой-то степени его функциональную организацию.

Все это позволило подойти к определению понятия «ген» с конкретных позиций. Характерно, что у современных генетиков сложность организации гена не вызывает сомнений. Молекулярно-генетические исследования свидетельствуют об этой сложности однозначно, а возникшие на основе анализа результатов этих исследований идеи нередко созвучны тем мыслям, которые и снос время высказывал А.С. Серебровский.

 

«Теория гена» Моргана

На основании анализа результатов многочисленных эксперементов с дрозофилой Томас Морган сформулировал хромосомную теорию наследственности, сущность которой заключается в следующем:

1. Материальные носители наследственности – гены находяться в хромосомах, распологаются в них линейно на определенном расстоянии друг от друга.

2. Гены, расположенные в одной хромосоме, относятся к одной группе сцепления. Число групп сцепления соответствует гаплоидному числу хромосом.

3. Признаки, гены которых находятьс в одной хромосоме, наследуются сцеплено.

4. В потомстве гетерозиготных родителей новые сочетания генов, расположенных в дной паре хромосом, могут возникать в результате кроссинговера в процессе мейоза.

5. Частота кроссинговера, определяемая по проценту кроссоверных особей, зависит от расстояния между генами.

6. На основании линейного расположения генов в хромосоме и частоты кроссинговера как покозателя расстояния между генами можно построить карты хромосом

 

Диагностика

По мере улучшения качества медицинской помощи наследственные заболевания приобретают все больший удельный вес в общей патологии человека. При этом наследственные болезни диагностируются не всегда, даже в клинических условиях. Диагностика наследственной патологии - сложный и трудоемкий процесс. В медицинской генетике применяются как клинические и параклинические, так и специальные генетические методы. Для установки диагноза ненаследственного заболевания достаточно общего клинического и лабораторного обследования. Общие клинические методы также позволяют диагностировать наиболее известные и распространенные наследственные заболевания, поскольку их клиническая картина была хорошо известна еще до установления наследственной природы (синдром Дауна). Но и в этих случаях возможны диагностические ошибки. Постановка диагноза происходит в два этапа: общее клиническое обследование больного в соответствии с современными требованиями и при подозрении на наследственную болезнь проведение специализированного дифференциально-диагностического обследования. Полного клинического обследования обычно достаточно для диагностики таких наследственных заболеваний, как ахондроплазия, хорея Гентингтона, ретинобластома. Однако широкий клинический полиморфизм наследственных болезней, их фенокопии, частичное совпадение симптомов разных заболеваний (наследственных и ненаследственных), необходимость выявления гетерозиготных носителей требуют применения специальных генетических диагностических методов, которые всегда более точны, чем клинические. Рассмотрим их подробнее.

 

Суть метода

Генеалогический метод относится к наиболее универсальным методам в медицинской генетике. Этот метод помог установить закономерности наследования очень большого числа самых различных признаков у человека, как нормальных, подобных цвету глаз, цвету и форме волос и т.п., так и сопутствующих наследственным болезням. Генеалогический метод - метод родословных. Он основан на составлении и анализе родословных, при помощи чего возможно прослеживание болезни (или признака) в семье или роду. В медицинской генетике этот метод называется клинико-генеалогическим. Суть метода сводится к выявлению родословных связей и прослеживанию патологического признака среди дальних и близких прямых и непрямых родственников. С его помощью может быть установлена наследственная обусловленность изучаемого признака, а также тип его наследования. Этот метод позволяет изучить интенсивность мутационного процесса, оценить экспрессивность и пенетрантность аллеля. Он складывается из двух этапов: составления родословной и генеалогического анализа.

 

Составление родословной

При составлении родословной исходным является человек - пробанд, родословную которого изучают. Как правило, это и есть больной, или носитель признака, наследование которого необходимо изучить. Родословная может собираться по одному или нескольким признакам. В последнем случае может быть выявлен сцепленный характер их наследования, что используется при составлении хромосомных карт. В зависимости от цели исследования родословная может быть полной или ограниченной. Необходимо все же стремится к наиболее полному составлению родословных, а для этого необходимы сведения не менее чем о 3-4 поколениях семьи пробанда. Составление родословной сопровождается краткой записью о каждом члене родословной с точной характеристикой его родства по отношению к пробанду (легенда родословной). Необходимо также отмечать обследованных и необследованных на наличие исследуемого признака. Получение сведений о родственниках - непростая задача. Пациенты зачастую не знают о болезнях родственников или предоставляют неверные сведения. Для получения более точных сведений применяют анкетирование, а иногда и полное клиническое и лабораторно-генетическое обследование родственников.

 

Изучение родословной

При анализе родословных в первую очередь необходимо установление наследственного характера признака. Если в родословной встречается один и тот же патологический признак несколько раз (на протяжении нескольких поколений), то, вероятно, он имеет наследственную природу. Далее необходимо установить тип наследования (аутосомно-доминантный, аутосомно-рецессивный, Х-сцепленный доминантный или рецессивный, Y-сцепленный). Определение типа наследования в конкретной родословной является серьезной генетической задачей, для ее решения врач должен иметь специальную подготовку

 

 

Позволяет изучать наследственные заболевания, обусловленные генными мутациями – причины болезней обмена веществ (фенилкетонурия, серповидно-клеточная анемия). С помощью этого метода описано более 1000 врожденных болезней обмена веществ, для многих из них выявлен дефект первичного генного продукта. Наиболее распространенными среди этих заболеваний являются болезни связанные с дефектностью ферментов, структурных, транспортных или иных белков.

Метод основан на изучении активности ферментных систем: либо по активности самого фермента, либо по количеству конечных продуктов реакции, катализируемой данным ферментом.

Дефекты ферментов определяют путем определения содержания в крови и моче продуктов метаболизма, являющихся результатом функционирования данного белка. Дефицит конечного продукта, сопровождающийся накоплением промежуточных и побочных продуктов нарушенного метаболизма, свидетельствует о дефекте фермента или его дефиците в организме.

С помощью биохимических нагрузочных тестов можно выявлять гетерозиготных носителей патологических генов, например, фенилкетонурии. Обследуемому человеку вводят внутривенно определенное количество аминокислоты фенилаланина и через равные промежутки времени определяют его концентрацию в крови. Если человек гомозиготен по доминантному гену (АА), то концентрация фенилаланина в крови довольно быстро возвращается к контрольному уровню, а если он гетерозиготен (Аа), то снижение концентрации фенилаланина идет вдвое медленнее.

Аналогично проводятся тесты, выявляющие предрасположенность к сахарному диабету, гипертонии и другим болезням.

Методы рекомбинантной ДНК

Позволяют анализировать фрагменты ДНК, находить и изолировать отдельные гены и сегменты генов и устанавливать в них последовательность нуклеотидов. К данному методу относиться метод клонирования ДНК. Термин «клонирование» означает, что ген клонирован, специальными приемами выделен, изучена его структура, клонирование гена означает также, что известен белок, синтез которого контролируется соответствующим геном. На основе клонированных генов создаются «геномные библиотеки» и международные банки данных, Любой специалист в мире может практически беспрепятственно войти в эти банки данных и воспользоваться для исследовательских целей собранной там информацией. Данные геномных библиотек широко используются при реализации программы «геном человека». (Коллекция фрагментов ДНК из всего генома)



Поделиться:


Последнее изменение этой страницы: 2020-12-09; просмотров: 249; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.15.94 (0.084 с.)