Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Нестационарный режим движения жидкостиСодержание книги
Поиск на нашем сайте Рассмотрим задачу моделирования на примере простой гидравлической системы, рассмотренной выше (рис. 2.1.1). При построении динамических моделей конечные балансовые уравнения 6 и 7 в системе уравнений математического описания (9) превращаются в обыкновенные дифференциальные уравнения вида:
где Если эти емкости являются цилиндрическими, то объем жидкости в них определяется по формуле VR = S × H (17) (S – площадь поперечного сечения цилиндра), и вышеприведенные обыкновенные дифференциальные уравнения (15) и (16) принимают следующий вид (в нумерации системы (9) – это будут уравнения 6 и 7): 6 7 Для решения системы дифференциальных уравнений на компьютере, т. е. получения соответствующего частного решения, необходимо задать начальные условия вида в принятой выше нумерации системы (9) – это будут уравнения
При этом решается задача Коши, или задача с начальными условиями, и получаемые частные решения представляют собой функции H 1(t) и H 2(t), рассматриваемые в замкнутом интервале [ t (0), t (k)], которые являются приближениями истинных функций решения Более общее представление систем двух дифференциальных уравнений (18) и (19) имеет вид:
где В итоге, математическое описание динамики простой гидравлической системы (см. рис. 2.1.1) представляет собой ту же самую систему уравнений (9), в которой балансовые уравнения 6 и 7 заменены на дифференциальные уравнения (18) и (19); в систему также включены два начальных условия (18 ') и (19 ') для получения частного решения на компьютере (общее решение обыкновенных дифференциальных уравнений, как правило, получают аналитическими методами). Таким образом, необходимо решить систему уравнений (9), из которых два являются дифференциальными – (18) и (19) – с начальными условиями (18 ') и (19 '). Для решения дифференциальных уравнений (18) и (19) целесообразно представить их в конечно-разностной форме в следующем виде в нумерации системы (9) – это будут уравнения
Если интервал интегрирования равен [ t (0), t ( k )], то правые части дифференциальных уравнений 1 2 3 4 5
8 P 5 = P 7 + r gH 1; 9 10 P 6 = P 8 + r gH 2; 11 Так как при решении системы двух дифференциальных уравнений –(18) и (19) – необходимо определить функции H 1(t) и H 2(t) [ t (0), t ( k )], т. е. и
|
||
|
Последнее изменение этой страницы: 2020-10-24; просмотров: 148; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.33 (0.008 с.) |