Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Принцип работы термоэлектрического холодильникаСодержание книги
Поиск на нашем сайте
Существуют устройства, основанные на эффекте Пельтье, заключающемся в поглощении теплоты одним из спаев термопар (разнородных проводников) при выделении ее на другом спае в случае пропускания через них тока. Этот принцип используют, в частности, в сумках-кулерах. Возможно как понижение, так и повышение температуры с помощью предложенных французским инженером Ранком вихревых трубок, в которых температура существенно изменяется по радиусу движущегося в них закрученного вихревого воздушного потока. Термоэлектрический холодильник основан на элементах Пельтье. Он бесшумен, но распространен мало из-за дороговизны охлаждающих термоэлектрических элементов. Однако небольшие автомобильные холодильники и охладители питьевой воды часто производят с охлаждением от элементов Пельтье.
Принцип работы холодильника на вихревых охладителях Охлаждение осуществляется за счёт расширения предварительно сжатого компрессором воздуха в блоках специальных вихревых охладителей. Они распространены мало из-за большой шумности, необходимости подвода сжатого (до 1,0-2,0 МПа) воздуха и очень большого его расхода, низкого КПД. Достоинства - большая безопасность (не используется электричество, нет движущихся частей и опасных химических соединений), долговечность и надёжность.
Примеры холодильных установок
Некоторые схемы и описания холодильных установок различного назначения, а также их фотографии показаны на рис. 7.27-7.34. Рис. 7.27. Принципиальная схема холодильной установки.
Рис. 7.28. Особенности работы холодильной установки в автомобиле.
Рис. 7.29. Схема монтажа холодильной системы «Вьюга-Стандарт» на автофургон. Рис. 7.30. Принципиальная схема аммиачной холодильной установки. Рис. 7.31. Принципиальная схема пастеризационно-охладительной установки.
Рис. 7.32. Примеры схем соединения оборудования в холодильных установках.
Рис. 7.33. Внешний вид некоторых холодильных установок.
Например, холодильные установки компрессорно-конденсатор-ные (тип АКК) или компрессорно-рессиверные (тип АКР), показанные на рис. 7.34, предназначены для работы c поддержанием температуры от +15 °С до -40 °С в камерах объёмом от 12 до 2500 м3. В состав холодильной установки входят: 1 - компрессорно-конденсаторный или компрессорно-рессиверный агрегат; 2 - воздухоохладитель; 3 - терморегулирующий вентиль (ТРВ); 4 - соленоидный вентиль; 5 - щит управления.
Рис. 7.34. Некоторые холодильные установки типов АКК и АКР. Тепловые насосы Тепловой насос - устройство для переноса тепловой энергии от источника низкопотенциальной тепловой энергии (с низкой температурой) к потребителю (теплоносителю) с более высокой температурой. Термодинамически тепловой насос аналогичен холодильной машине. Однако если в холодильной машине основной целью является производство холода путём отбора теплоты из какого-либо объёма испарителем, а конденсатор осуществляет сброс теплоты в окружающую среду, то в тепловом насосе картина обратная. Конденсатор является теплообменным аппаратом, выделяющим теплоту для потребителя, а испаритель - теплообменным аппаратом, утилизирующим низкопотенциальную теплоту: вторичные энергетические ресурсы и (или) нетрадиционные возобновляемые источники энергии. Рис. 7.35. Воздушный тепловой насос.
Концепция тепловых насосов была разработана ещё в 1852 году выдающимся британским физиком и инженером Уильямом Томсоном (Лордом Кельвином) и в дальнейшем усовершенствована и детализирована австрийским инженером Петером Риттер фон Риттингером (Peter Ritter von Rittinger). Петера Риттера фон Риттингера считают изобретателем теплового насоса, ведь именно он спроектировал и установил первый известный тепловой насос в 1855 году. Но практическое применение тепловой насос в 40-х годах ХХ века, когда изобретатель-энтузиаст Роберт Вебер (Robert C. Webber) экспериментировал с морозильной камерой. Однажды Вебер случайно прикоснулся к горячей трубе на выходе камеры и понял, что теплота просто выбрасывается наружу. Изобретатель задумался над тем, как использовать эту теплоту, и решил поместить трубу в бойлер для нагрева воды. В результате Вебер обеспечил свою семью таким количеством горячей воды, которое они физически не могли использовать, при этом часть теплоты от нагретой воды попадала в воздух. Это подтолкнуло его к мысли, что от одного источника теплоты можно нагревать и воду, и воздух одновременно. Поэтому Вебер усовершенствовал своё изобретение и начал прогонять горячую воду по спирали (через змеевик) и с помощью небольшого вентилятора распространять теплоту по дому с целью его отопления. Со временем именно у Вебера появилась идея «выкачивать» теплоту из земли, где температура не слишком изменялась в течение года. Он поместил в грунт медные трубы, по которым циркулировал фреон, который «собирал» теплоту земли. Газ конденсировался, отдавал свою теплоту в доме, и снова проходил через змеевик, чтобы подобрать следующую порцию теплоты. Воздух приводился в движение с помощью вентилятора и распространялся по дому. В следующем году Вебер продал свою старую угольную печь. В 40-х годах ХХ века тепловой насос стал известен из-за своей эффективности, но потребность в нём возникла в 70-х годах ХХ века в связи с появлением в мире интереса к энергосбережению. Типы тепловых насосов В зависимости от принципа работы тепловые насосы подразделяются на компрессионные и абсорбционные. Компрессионные тепловые насосы всегда приводятся в действие с помощью механической энергии (электроэнергии), в то время как абсорбционные тепловые насосы могут также использовать теплоту в качестве источника энергии (с помощью электроэнергии или топлива). В зависимости от источника отбора теплоты тепловые насосы подразделяются на: 1) геотермальные (используют теплоту земли, наземных либо подземных грунтовых вод); 2) воздушные (источником отбора теплоты является воздух); 3) использующие производную (вторичную) теплоту (например, теплоту трубопровода центрального отопления). Подобный вариант является наиболее целесообразным для промышленных объектов, где есть источники паразитной теплоты, которая требует утилизации. Геотермальный тепловой насос может быть: - замкнутого типа (горизонтальным, вертикальным или водным); - открытого типа; - с непосредственным теплообменом. Рис. 7.36. Геотермальный тепловой насос. Рис. 7.37. Воздушный тепловой насос.
|
||||
Последнее изменение этой страницы: 2020-10-24; просмотров: 280; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.40.43 (0.006 с.) |