Слизистый компонент надклеточного слоя 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Слизистый компонент надклеточного слоя



 Слизь появляется на поверхности эпителиальной выстилки в результате секреции бокаловидных клеток и из белково-слизистых желез в виде капель диаметром 1 - 2 мкм. Концентрированные гликопротеины секрета способны абсорбировать воду, в результате чего капли увеличиваются в размере и принимают форму пластинок, хлопьев («flakes»), нитевидных структур, дисков. По мере увеличения калибра бронха толщина слизистого слоя, покрывающего эпителий, возрастает. В трахее толщина слоя слизи составляет 10 мкм, а в крупных бронхах - 5 - 10 мкм. У человека за 1 сут секретируется слизи до 0,75 мл/кг массы тела, которая обладает антибактериальными и антивирусными свойствами, так как она содержит факторы неспецифической и специфической противоинфекционной защиты [4].

 Основой бронхиальной слизи являются муцины, которые продуцируются преимущественно подслизистыми железами бронхов и в значительно меньшей степени бокаловидными клетками эпителия бронхов. Соответственно слой слизи, выстилающей воздухоносные пути, в норме постепенно утолщается в проксимальном направлении, оказываясь минимальным у устьев бронхиол и наиболее значительным у входа в гортань [5].

 Муцины - макромолекулярные гликопротеины с высокой молекулярной массой, составляющие 60 - 70% твердого остатка бронхиального секрета. Муцины содержат не более 10 - 20% аминокислот-анионов. По характеру наружных активных групп муцины делятся на кислые (сиало- и сульфомуцины) и нейтральные (фукомуцины). Благодаря особенностям своей структуры, молекулы муцинов способны сжиматься и приобретать кольцевидную форму, обусловливая эластичность бронхиального секрета [6, 7]. В настоящее время выделено 19 муцин-генов (MUC), которые подразделяются на две подгруппы - мембранно-ассоциированные и секреторные [8]. Функциональная роль мембранно-ассоциированных генов остается малоизученной. Секреторные гены ответственны за выработку секрета. Секретируемые муцины (MUC2, MUC5AC, MUC5B, MUC6, MUC7, MUC8) вносят свой вклад в обеспечение вязкостно-эластических свойств бронхиального секрета. Из всех секретируемых муцинов наибольшее значение при воспалительных заболеваниях имеют MUC5AC в бокаловидных клетках, а также MUC2 и MUC5B - в железах подслизистого слоя [9 - 12].

 Биофизические свойства (вязкость и эластичность) бронхиального секрета зависят от структуры секретируемых муцинов, химической природы их поверхностных групп и рН растворимой фазы. Поскольку поверхностные группы муцинов являются полярными, между ними возникают электростатические взаимодействия, результатом которых становится в разной степени выраженная агрегация макромолекул с формированием фибриллярных структур, определяющих вязкость бронхиального секрета. На интенсивность агрегации существенное влияние оказывает рН растворимой фазы, зависящей в свою очередь от соотношения кислых и основных групп на поверхности секреторных гликопротеинов. В нормальном бронхиальном секрете количественно доминируют кислые сиаломуцины, обеспечивающие его эластические свойства. Физиологическая роль фукомуцинов остается неясной, но установлено, что содержание их в бронхиальном секрете возрастает при гнойновоспалительных процессах в бронхах [13 - 15].

 Образование бронхиального секрета является управляемым процессом, в регуляции которого участвуют вегетативная нервная система, нехолинергические неадренергические сенсорные нервы, а также тесно взаимосвязанные в своих эффектах системы гуморальной регуляции. Подслизистые железы трахеи и бронхов содержат слизистые и серозные клетки и оплетены окончаниями симпатических и парасимпатических нервов. Холинергическая стимуляция увеличивает секрецию клетками обоих типов, не влияя на вязкоэластические свойства бронхиального секрета. Напротив, симпатическая стимуляция значительно и неоднозначно влияет не только на объем, но и на реологические характеристики бронхиального секрета. Раздражение альфаадренергических рецепторов вызывает профузную секрецию жидкости с низким содержанием белка и муцинов и, соответственно, с низкой вязкостью. При этом происходит селективное истощение серозных клеток подслизистых желез. При бетаадренергической стимуляции выделяется скудный густой секрет с высоким содержанием белка и сульфатов и происходит селективное истощение слизистых клеток. Стимулирующее влияние на секрецию подслизистых желез оказывают также нехолинергические неадренергические сенсорные нервы, из окончаний которых высвобождается «субстанция Р», относящееся к классу тахикининов (нейропептидов). К этому же классу соединений относится «вазоактивный интестинальный пептид» (ВИП), высвобождаемый парасимпатическими нервами и находящийся в сложных отношениях взаимного физиологического контроля с ацетилхолином [15, 16].

 Все эти варианты регуляции секреторной активности подслизистых бронхиальных желез при участии различных компонентов нервной системы организма носят рефлекторный характер и тесно взаимосвязаны с ее функциональным статусом в разных условиях нормы и патологии. Вместе с тем важным механизмом регуляции бронхиальной секреции является метаболическая активность самого бронхиального эпителия, способного синтезировать простагландин Е, простагландин Р<sub>2</sub><sub>альфа</sub>, лейкотриены, а также железистый калликреин, под влиянием которого в тканях генерируются каллидин и метиониллизил-брадикинин, относящиеся к группе активных кининов.

 Среди систем метаболической регуляции бронхиальной секреции в физиологических условиях ведущая роль, повидимому, принадлежит простагландинам. Более мощными индукторами бронхиальной секреции служат сульфидопептидные лейкотриены, высвобождаемые преимущественно при агрессивных воздействиях как бронхиальным эпителием, так и эффекторными клетками. Помимо прямого действия на подслизистые железы и бокаловидные клетки, лейкотриены интенсифицируют биосинтез провоспалительных простагландинов, в результате чего процесс бронхиальной гиперсекреции приобретает лавинообразный характер. В условиях патологии стимулирующее действие на уровень бронхиальной секреции оказывают также активные кинины, образуемые в стенках и просветах бронхов под влиянием железистого калликреина. Механизм действия кининов реализуется через активацию ферментов, участвующих в образовании муцинов (гликозилтрансфераз, галактозилтрансферазы) [16].

 Интенсивность и характер бронхиальной секреции тесно связаны с морфологическими изменениями секреторного аппарата бронхиального эпителия. Гиперсекреция обычно сочетается с гиперплазией секреторных клеток. Атрофия бронхиального эпителия сопровождается нарушением его секреторной способности. При этом снижение секреторной функции подслизистых бронхиальных желез всегда - явление чисто патологическое, нарушающее механизм локальной защиты. Что касается гиперсекреции, то существует грань между защитной гиперсекрецией, способствующей очищению легких, и избыточной, создающей предпосылки для снижения проходимости бронхов и нарушения вентиляционной функции легких [14, 15].

 В обеспечении нормального функционирования и сохранения структурной целостности органов дыхания важны не только количество и свойства локально синтезируемых муцинов. Не меньшую роль играет растворимая фракция бронхиального секрета, 85 - 95% которой составляет вода. Электролитный состав бронхиального секрета не является результатом простой диффузии ионов в просвет бронхов, а формируется посредством их активного транспорта и поэтому отличается от ионного состава плазмы более низкой концентрацией натрия и высоким содержанием калия при общей гипотоничности растворимой фракции по отношению к плазме [17].

 Белки секрета имеют двоякое происхождение. Часть из них попадает в бронхолегочное пространство путем транссудации, другие синтезируются локально клетками бронхиального и бронхиолярного эпителия. Основную массу белков растворимой фракции составляет альбумин, имеющий плазменное происхождение. Выход его в респираторное пространство увеличивается при повышении сосудистой проницаемости.

 Важным компонентом растворимой фракции являются белки, осуществляющие функцию антимикробной и антивирусной защиты. К ним относятся: иммуноглобулины (IgA, IgG и IgM); лизоцим и лактоферрин; трансферрин. Два последних, повидимому, попадают в респираторное пространство из плазмы. Среди иммуноглобулинов основным является IgA, присутствующий в бронхиальном секрете в двух формах - мономерной и димерной. При этом доминирующей формой (90%) оказывается димер, являющийся продуктом местной секреции слизистой оболочки бронхов и обозначаемый в литературе как секреторный IgA (sIgA). Интенсивность синтеза sIgA находится в прямой зависимости от состояния клеток слизистой оболочки бронхов и нарушается при ее воспалительных и, особенно, атрофических изменениях. Роль других иммуноглобулинов, имеющих в основном плазменное происхождение, в противоинфекционной защите дыхательных путей, повидимому, является более скромной [14, 18, 19].

 Другим важным фактором локальной антимикробной и антивирусной защиты служит лизоцим. При возникновении соответствующих стимулов он синтезируется серозными клетками подслизистых желез, а также присутствующими в бронхолегочном пространстве нейтрофилами и макрофагами. При воспалительных изменениях в бронхах содержание лизоцима в бронхиальном секрете существенно нарастает. При этом он вступает в электростатические взаимодействия с поверхностными группами муцинов, вызывая увеличение вязкости бронхиального секрета [14, 18, 20].

 Очень важным аспектом физиологии и патологии бронхиального секрета является состояние баланса между активностью высвобождаемых в просвете бронхов протеолитических ферментов и емкостью локальной антипротеолитической защиты. Источниками протеиназ в органах дыхания служат нейтрофилы и макрофаги, высвобождающие свои лизосомные ферменты в окружающую среду в процессе фагоцитоза, а также патогенная микрофлора. Наиболее агрессивным из ферментов фагоцитов является нейтрофильная эластаза (НЭ), способная разрушать все структурные элементы легкого, а также растворимые белки бронхиального секрета, включая sIgA. Из всей патогенной микрофлоры наибольшим протеолитическим потенциалом обладает Pseudomonas aeruginosa.

 В физиологических условиях бронхолегочное пространство надежно защищено от протеолитической агрессии системой ингибиторов протеолитических ферментов. Поэтому протеиназы по мере их высвобождения немедленно комплексируются с присутствующими в избытке ингибиторами и их потенциальная повреждающая активность по отношению к структурным компонентам легкого полностью блокируется.

 type: dkli00069

ФУНКЦИЯ РЕСНИЧЕК

 Транспорт слизи происходит неравномерно, прерывистыми импульсами и связан непосредственно с функцией ресничек, а не является результатом движения водной фазы, как думали ранее. Во время колебания ресничек в фазе «удара» апикальные концы ресничек упираются в слизь или проникают в нее не более чем на 0,5 мкм. В последующей фазе, когда ресничка отклоняется, слизь перемещается вдоль жидкой фазы. При этом околореснитчатая жидкость изменяет свое положение незначительно, ее стабилизаторами служат микроворсинки, в области которых возможно всасывание жидкости путем эндоцитоза.

 Для обеспечения нормального мукоцилиарного клиренса необходима нормальная длина ресничек, нормальная структура их аксонем и базальных телец, а также состав и толщина околореснитчатой жидкости. Если этот слой утолщен, то движения ресничек не достигают своей цели, так как они не упираются в слой слизи и не перемещают ее. Если перицилиарная жидкость отсутствует, реснички не могут осуществлять движения и склеиваются. Толщина слоя перицилиарной жидкости регулируется самими ресничками и степенью активности ионного транспорта жидкости эпителиальными клетками выстилки воздухоносных путей.

 Под действием ресничек ингалированная частица вместе со слизистым покрытием может проходить апикальные поверхности 10 клеток слизистой оболочки за 1 с [4]. Скорость перемещения слизи тем выше, чем проксимальнее расположены воздухоносные пути. На слизистой оболочке стенок полости носа оседает 40% инородных частиц, содержащихся в воздухе, причем здесь задерживаются лишь относительно крупные частицы, размером более 50 мкм. В трахею проникают частицы диаметром до 30 - 50 мкм, в бронхи - диаметром 10 - 30 мкм, в бронхиолы - 3 - 10 мкм, в альвеолы - 1 - 3 мкм. Выведение инородных частиц со слизью из бронхов протекает довольно быстро - в течение 1 ч. Поступательное движение бронхиального секрета снизу вверх возможно благодаря тому, что слизь обладает свойствами ригидно-упругого тела, которое передвигается в ответ на силу, развиваемую движением мерцательного аппарата ресничек. Время релаксации слизи в норме равно 250 с. Нормальное функционирование мерцательного эпителия воздухоносных путей возможно лишь в оптимальных условиях: при 18 - 37С и рН 7,0 - 7,5, а также оптимальной влажности и ионизации воздуха. С возрастом скорость движения слизи в воздухоносных путях понижается. При значительном уменьшении мукоцилиарного транспорта выведение инородных частиц из органов дыхания осуществляется в результате кашля и во время движения воздуха при выдохе.

 type: dkli00070

КАШЛЕВОЙ РЕФЛЕКС

 Кашлевой рефлекс играет важную роль в мукоцилиарном клиренсе. Кашлевые рецепторы и муцин-продуцирующие железы подслизистого слоя располагаются в крупных бронхах. Сенсорные ирританты, попадая в дыхательные пути, стимулируют секрецию слизи через эфферентные холинергические нервные волокна блуждающего нерва [21]. При развитии хронического воспаления стимулирование этих рефлекторных путей чрезмерно. Поскольку кашлевой рефлекс угнетен во время сна, накопленный избыточный секрет, вырабатываемый в крупных бронхах, может ретроградно поступать в периферические отделы [22]. Такой механизм характерен, в частности, для хронического бронхита и муковисцидоза. При этом происходит инфицирование нижележащих воздухоносных путей. Ретроградная аспирация секрета, содержащего бактерии и слизь, приводит к инфицированию, появлению бокаловидных клеток в мелких бронхах, их дегрануляции и продукции слизи на периферии.

 type: dkli00071



Поделиться:


Последнее изменение этой страницы: 2020-11-11; просмотров: 106; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.15.248 (0.021 с.)