Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Формулировка закона противоречия

Поиск

Глава 2. Законы логики.

Закон противоречия

В логике, как и во всякой науке, главное – законы. Логических законов бесконечно много, и в этом ее отличие от большинства других наук. Однородные законы объединяются в логические системы, которые тоже обычно именуются логиками.

Без логического закона нельзя понять, что такое логическое следование и что такое доказательство. Правильное, или, как обычно говорят, логичное, мышление – это мышление по законам логики, по тем абстрактным схемам, которые фиксируются ими. Законы логики составляют тот невидимый каркас, на котором держится последовательное рассуждение и без которого оно превращается в хаотическую, бессвязную речь.

Формулировка закона противоречия

Из бесконечного множества логических законов самым популярным является закон противоречия. Он был открыт одним из первых и сразу же объявлен наиболее важным принципом не только человеческого мышления, но и самого бытия.

И вместе с тем в истории логики не было периода, когда этот закон не оспаривался бы и когда дискуссии вокруг него совершенно затихали бы.

Закон противоречия говорит о противоречащих друг другу высказываниях, т. е. о таких высказываниях, одно из которых является отрицанием другого. К ним относятся, например, высказывания «Луна – спутник Земли» и «Луна не является спутником Земли», «Трава – зеленая» и «Неверно, что трава зеленая» и т. п. В одном из противоречащих высказываний что-то утверждается, в другом – это же самое отрицается.

Если обозначить буквой А произвольное высказывание, то выражение не-А, будет отрицанием этого высказывания.

Идея, выражаемая законом противоречия, кажется простой и даже банальной: высказывание и его отрицание не могут быть вместе истинными.

Используя вместо высказываний буквы, эту идею можно передать так: неверно, что А и не-А. Неверно, например, что трава зеленая и не зеленая, что Луна спутник Земли и не спутник Земли и т.д.

Закон противоречия говорит о противоречащих высказываниях – отсюда его название. Но он отрицает противоречие, объявляет его ошибкой и тем самым требует непротиворечивости – отсюда другое распространенное имя – закон непротиворечия.

Мнимые противоречия

Большинство неверных толкований этого закона и большая часть попыток оспорить его приложимость, если не во всех, то хотя бы в отдельных областях, связаны с неправильным пониманием логического отрицания, а значит, и противоречия.

Высказывание и его отрицание должны говорить об одном и том же предмете, рассматриваемом в одном и том же отношении. Эти два высказывания должны совпадать во всем, кроме одной единственной вещи: то, что утверждается в одном, отрицается в другом. Если эта простая вещь забывается, противоречия нет, поскольку нет отрицания.

В романе Ф. Рабле «Гаргантюа и Пантагрюэль» Панург спрашивает Труйогана, стоит жениться или нет. Труйоган как истинный философ отвечает довольно загадочно: и стоит, и не стоит. Казалось бы, явно противоречивый, а потому невыполнимый и бесполезный совет. Но постепенно выясняется, что никакого противоречия здесь нет. Сама по себе женитьба – дело неплохое. Но плохо, когда, женившись, человек теряет интерес ко всему остальному.

Видимость противоречия связана здесь с лаконичностью ответа Труйогана. Если же пренебречь соображениями риторики и, лишив ответ загадочности, сформулировать его полностью, станет ясно, что он непротиворечив и может быть даже небесполезен. Стоит жениться, если будет выполнено определенное условие, и не стоит жениться в противном случае. Вторая часть этого утверждения не является, конечно, отрицанием первой его части. […]

Если ввести понятия истины и лжи, закон противоречия можно сформулировать так: никакое высказывание не является вместе истинным и ложным.

В этой версии закон звучит особенно убедительно. Истина и ложь – это две несовместимые характеристики высказывания. Истинное высказывание соответствует действительности, ложное не соответствует ей. Тот, кто отрицает закон противоречия, должен признать, что одно и то же высказывание может соответствовать реальному положению вещей и одновременно не соответствовать ему. Трудно понять, что означают в таком случае сами понятия истины и лжи.

Римский философ-стоик Эпиктет, вначале раб одного из телохранителей императора Нерона, а затем секретарь императора, так обосновывал необходимость закона противоречия: «Я хотел бы быть рабом человека, не признающего закона противоречия. Он велел бы мне подать себе вина, я дал бы ему уксуса или еще чего похуже. Он возмутился бы, стал бы кричать, что я даю ему не то, что он просил. А я сказал бы ему: ты не признаешь ведь закона противоречия, стало быть, что вино, что уксус, что какая угодно гадость: все одно и то же. И необходимости ты не признаешь, стало быть, никто не силах принудить тебя воспринимать уксус как что-то плохое, а вино как хорошее. Пей уксус как вино и будь доволен. Или так: хозяин велел побрить себя. Я отхватываю ему бритвою ухо или нос. Опять начинаются крики, но я повторил бы ему свои рассуждения. И все делал бы в таком роде, пока не принудил бы хозяина признать истину, что необходимость непреодолима и закон противоречия всевластен».

Так комментировал Эпиктет слова Аристотеля о принудительной силе необходимости, и в частности закона противоречия.

Смысл этого эмоционального комментария сводится, судя по всему, к идее, известной еще Аристотелю: из противоречия можно вывести все, что угодно. Тот, кто допускает противоречие в своих рассуждениях, должен быть готов к тому, что из распоряжения принести ему вина будет выведено требование подать уксуса, из команды побрить – команда отрезать нос и т.д. […]

Иногда закон противоречия формулируют следующим образом: из двух противоречащих друг другу высказываний одно является ложным.

Закон исключенного третьего

Закон исключенного третьего, как и закон противоречия, устанавливает связь между противоречащими друг другу высказываниями. И опять-таки идея, выражаемая им, представляется поначалу простой и очевидной: из двух противоречащих высказываний одно является истинным.

В использовавшейся уже полусимволической форме: А или не-А, т.е. истинно высказывание А или истинно его отрицание, высказывание не-А.

Конкретными приложениями этого закона являются, к примеру, высказывания: «Аристотель умер в 322 г. до н.э. или он не умер в этом году», «Личинки мух имеют голову или не имеют ее».

Истинность отрицания равнозначна ложности утверждения. В силу этого закон исключенного третьего можно передать и так: каждое высказывание является истинным или ложным.

Само название закона выражает его смысл: дело обстоит так, как описывается в рассматриваемом высказывании, иди так, как говорит его отрицание, и никакой третьей возможности нет. […]

В сказке А.Н.Толстого «Золотой ключик, или Приключения Буратино» народный лекарь Богомол заключает после осмотра Буратино:

– Одно из двух: или пациент жив или он умер. Если он жив – он останется жив или не останется жив. Если он мертв – его можно оживить или нельзя оживить.

Сомнения в универсальности закона

Оба закона – и закон противоречия и закон исключенного третьего – были известны еще до Аристотеля. Он первым дал, однако, их ясные формулировки, подчеркнул важность этих законов для понимания мышления и бытия и вместе с тем выразил определенные сомнения в универсальной приложимости второго из них.

«...Невозможно, – писал Аристотель, – чтобы одно и то же в одно и то же время было и не было присуще одному и тому же в одном и том же отношении (и все другое, что мы могли бы еще уточнить, пусть будет уточнено во избежание словесных затруднений) – это, конечно, самое достоверное из всех начал». Такова формулировка закона противоречия и одновременно предупреждение о необходимости сохранять одну и ту же точку зрения в высказывании и его отрицании «во избежание словесных затруднений». Здесь же Аристотель полемизирует с теми, кто сомневается в справедливости данного закона: «...не может кто бы то ни было считать одно и то же существующим и несуществующим, как это, по мнению некоторых, утверждает Гераклит».

О законе исключенного третьего: «...не может быть ничего промежуточного между двумя членами противоречия, а относительно чего-то одного необходимо что бы то ни было одно либо утверждать, либо отрицать».

Аристотель сомневался в приложимости закона исключенного третьего к высказываниям о будущих событиях. В настоящий момент наступление некоторых из них еще не предопределено. Нет причины ни для того, чтобы они произошли, ни для того, чтобы они не случились. «Через сто лет в этот же день будет идти дождь», – это высказывание сейчас скорее всего ни истинно, ни ложно. Таким же является его отрицание. Ведь сейчас нет причины ни для того, чтобы через сто лет пошел дождь, ни для того, чтобы его через сто лет не было. Но закон исключенного третьего утверждает, что или само высказывание, или его отрицание истинно. Значит, заключает Аристотель, хотя и без особой уверенности, данный закон следует ограничить одними высказываниями о прошлом и настоящем и не прилагать его к высказываниям о будущем.

Ответ на этот вопрос не представляет, однако, труда. Ни одно из двух утверждений: «Дух зеленый» и «Дух не зеленый» не является истинным, поскольку оба они бессмысленные. Закон исключенного третьего приложим только к осмысленным высказываниям. Только они могут быть истинными или ложными. Бессмысленное же не истинно и не ложно.

Гегелевская критика логических законов опиралась, как это нередко бывает, на придание им того смысла, которого у них нет, и приписывание им тех функций, к которым они не имеют отношения. Случай с критикой закона исключенного третьего – один из примеров такого подхода.

Сделанные вскользь, разрозненные и недостаточно компетентные критические замечания Гегеля в адрес формальной логики получили, к сожалению, широкое хождение. В логике в конце XIX – начале XX вв. произошла научная революция, в корне изменившая лицо этой науки. Но даже огромные успехи, достигнутые логикой, не смогли окончательно искоренить тех ошибочных представлений о ней, у истоков которых стоял Гегель. Не случайно немецкий историк логики X. Шольц писал, что гегелевская критика формальной логики была злом настолько большим, что его и сейчас трудно переоценить.

Критика закона Брауэром

Резкой, но хорошо обоснованной критике подверг закон исключенного третьего голландский математик Л.Брауэр. В начале этого (XX) века он опубликовал три статьи, в которых выразил сомнение в неограниченной приложимости законов логики и прежде всего закона исключенного третьего. Первая из этих статей не превышала трех страниц, вторая – четырех, а вместе они не занимали и семнадцати страниц. Но впечатление, произведенное ими, было чрезвычайно сильным. Брауэр был убежден, что логические законы не являются абсолютными истинами, не зависящими от того, к чему они прилагаются. Возражая против закона исключенного третьего, он настаивал на том, что между утверждением и его отрицанием имеется еще третья возможность, которую нельзя исключить. Она обнаруживает себя при рассуждениях о бесконечных множествах объектов.

Допустим, что утверждается существование объекта с определенным свойством. Если множество, в которое входит этот объект, конечно, то можно перебрать все объекты. Это позволит выяснить, какое из следующих двух утверждений истинно: «В данном множестве есть объект с указанным свойством» или же: «В данном множестве нет такого объекта». Закон исключенного третьего здесь справедлив.

Но когда множество бесконечно, то объекты его невозможно перебрать. Если в процессе перебора будет найден объект с требуемым свойством, первое из указанных утверждений подтвердится. Но если найти этот объект не удастся, ни о первом, ни о втором из утверждений нельзя ничего сказать, поскольку перебор не проведен до конца. Закон исключенного третьего здесь не действует: ни утверждение о существовании объекта с заданным свойством, ни отрицание этого утверждения не являются истинными.

Ограничение Брауэром сферы действия этого закона существенно сужало круг тех способов рассуждения, которые применимы в математике. Это сразу же вызвало резкую оппозицию многих математиков, особенно старшего поколения. «Изъять из математики принцип исключенного третьего, – писал немецкий математик Д. Гильберт, – все равно что... запретить боксеру пользоваться кулаками».

Критика Брауэром закона исключенного третьего привела к созданию нового направления в логике – интуиционистской логики. В последней не принимается этот закон и отбрасываются все те способы рассуждения, которые с ним связаны. Среди них — доказательства путем приведения к противоречию, или абсурду.

Еще законы

Закон тождества

Самый простой из всех логических законов – это, пожалуй, закон тождества. Он говорит: если утверждение истинно, то оно истинно, «если А, то А». Например, если Земля вращается, то она вращается и т.п. Чистое утверждение тождества кажется настолько бессодержательным, что редко кем употребляется.

Древнекитайский философ Конфуций поучал своего ученика: «То, что знаешь, считай, что знаешь, то, что не знаешь, считай, что не знаешь». Здесь не просто повторение одного и того же: знать что-либо и знать, что это знаешь, не одно и то же.

Закон тождества кажется в высшей степени простым и очевидным. Однако и его ухитрялись истолковывать неправильно. Заявлялось, например, будто этот закон утверждает, что вещи всегда остаются неизменными, тождественными самим себе. Это, конечно, недоразумение. Закон ничего не говорит об изменчивости или неизменности. Он утверждает только, что если вещь меняется, то она меняется, а если она остается одной и той же, то она остается той же. […]

*************************************

Дедукция и индукция

«По одной капле воды... человек, умеющий мыслить логически, может сделать вывод о существовании Атлантического океана или Ниагарского водопада, даже если он не видал ни того, ни другого и никогда о них не слыхал... По ногтям человека, по его рукам, обуви, сгибу брюк на коленях, по утолщениям кожи на большом и указательном пальцах, по выражению лица и обшлагам рубашки – по таким мелочам нетрудно угадать его профессию. И можно не сомневаться, что все это, вместе взятое, подскажет сведущему наблюдателю верные выводы».

Это цитата из программной статьи самого знаменитого в мировой литературе сыщика-консультанта Шерлока Холмса. Исходя из мельчайших деталей, он строил логически безупречные цепи рассуждений и раскрывал запутанные преступления, причем зачастую не выходя из своей квартиры на Бейкер-стрит. Холмс использовал созданный им самим дедуктивный метод, ставящий, как полагал его друг доктор Уотсон, раскрытие преступлений на грань точной науки.

Конечно, Холмс несколько преувеличивал значение дедукции в криминалистике, но его рассуждения о дедуктивном методе сделали свое дело. «Дедукция» из специального и известного только немногим термина превратилась в общеупотребительное и даже модное понятие. Популяризация искусства правильного рассуждения, и, прежде всего дедуктивного рассуждения, – не меньшая заслуга Холмса, чем все раскрытые им преступления. Ему удалось «придать логике прелесть грезы, пробирающейся сквозь хрустальный лабиринт возможных дедукций к единственному сияющему выводу» (В.Набоков).

Определения дедукции и индукции

Идет дождь.

Земля мокрая.

Гелий не электропроводен.

Гелий не металл.

Все люди смертны.

Все греки люди.

Тот особый интерес, который проявляется к дедуктивным умозаключениям, понятен. Они позволяют из уже имеющегося знания получать новые истины, и притом с помощью чистого рассуждения, без обращения к опыту, интуиции, здравому смыслу и т.п. Дедукция дает стопроцентную гарантию успеха, а не просто обеспечивает ту или иную – быть может, и высокую – вероятность истинного заключения. Отправляясь от истинных посылок и рассуждая дедуктивно, мы обязательно во всех случаях получим достоверное знание.

Подчеркивая важность дедукции в процессе развертывания и обоснования знания, не следует, однако, отрывать ее от индукции и недооценивать последнюю. Почти все общие положения, включая и научные законы, являются результатами индуктивного обобщения. В этом смысле индукция – основа нашего знания. Сама по себе она не гарантирует его истинности и обоснованности, но она порождает предположения, связывает их с опытом и тем самым сообщает им определенное правдоподобие, более или менее высокую степень вероятности. Опыт – источник и фундамент человеческого знания. Индукция, отправляющаяся от того, что постигается в опыте, является необходимым средством его обобщения и систематизации.

Все ранее рассмотренные схемы рассуждений являлись примерами дедуктивных рассуждений. Логика высказываний, модальная логика, логическая теория категорического силлогизма – все это разделы дедуктивной логики.

Обычные дедукции

В обычных рассуждениях дедукция только в редких случаях предстает в полной и развернутой форме. Чаще всего мы указываем не все используемые посылки, а лишь некоторые. Общие утверждения, о которых можно предполагать, что они хорошо известны, как правило, опускаются. Не всегда явно формулируются и заключения, вытекающие из принятых посылок. Сама логическая связь, существующая между исходными и выводимыми утверждениями, лишь иногда отмечается словами, подобными «следовательно» и «значит»,

Проводить дедуктивное рассуждение, ничего не опуская и не сокращая, довольно обременительно. Человек, указывающий все предпосылки своих заключений, создает впечатление мелкого педанта. И вместе с тем всякий раз, когда возникает сомнение в обоснованности сделанного вывода, следует возвращаться к самому началу рассуждения и воспроизводить его в возможно более полной форме. Без этого трудно или даже просто невозможно обнаружить допущенную ошибку.

Многие литературные критики полагают, что Шерлок Холмс был «списан» А. Конан Дойлом с профессора медицины Эдинбургского университета Джозефа Белла. Последний был известен как талантливый ученый, обладавший редкой наблюдательностью и отлично владевший методом дедукции. Среди его студентов был и будущий создатель образа знаменитого детектива.

Однажды, рассказывает в своей автобиографии Конан Дойл, в клинику пришел больной, и Белл спросил его:

– Вы служили в армии?

– Так точно! — став по стойке смирно, ответил пациент.

– В горнострелковом полку?

– Так точно, господин доктор!

– Недавно ушли в отставку?

– Так точно!

– Были сержантом?

– Так точно! — лихо ответил больной.

– Стояли на Барбадосе?

– Так точно, господин доктор!

Студенты, присутствовавшие при этом диалоге, изумленно смотрели на профессора. Белл объяснил, насколько просты и логичны его выводы.

Этот человек, проявив при входе в кабинет вежливость и учтивость, все же не снял шляпу. Сказалась армейская привычка. Если бы пациент был в отставке длительное время, то давно усвоил бы гражданские манеры. В осанке властность, по национальности он явно шотландец, а это говорит за то, что он был командиром. Что касается пребывания на Барбадосе, то пришедший болеет элефантизмом (слоновостью) – такое заболевание распространено среди жителей тех мест.

В зависимости от того, насколько широко используется дедуктивная аргументация, все науки принято делить на дедуктивные и индуктивные. Во-первых, используется по преимуществу или даже единственно дедуктивная аргументация. Во-вторых, такая аргументация играет лишь заведомо вспомогательную роль, а на первом месте стоит эмпирическая аргументация, имеющая индуктивный, вероятностный характер. Типично дедуктивной наукой считается математика, образцом индуктивных наук являются естественные науки. Однако деление наук на дедуктивные и индуктивные, широко распространенное еще в начале этого (XX) века, сейчас во многом утратило свое значение. Оно ориентировано на науку, рассматриваемую в статике, как систему надежно и окончательно установленных истин.

Понятие доказательства

По способу проведения доказательства делятся на два вида. При прямом доказательстве задача состоит в том, чтобы найти такие убедительные аргументы, из которых логически вытекает тезис. Косвенное доказательство устанавливает справедливость тезиса тем, что вскрывает ошибочность противопоставляемого ему допущения, антитезиса.

Например, нужно доказать, что сумма углов четырехугольника равна 360°. Из каких утверждений можно было бы вывести этот тезис? Отмечаем, что диагональ делит четырехугольник на два треугольника. Значит, сумма его углов равна сумме углов двух треугольников. Известно, что сумма углов треугольника составляет 180°. Из этих положений выводим, что сумма углов четырехугольника равна 360°. Еще пример. Нужно доказать, что космические корабли подчиняются действию законов космической механики. Известно, что эти законы универсальны: им подчиняются все тела в любых точках космического пространства. Очевидно также, что космический корабль есть космическое тело. Отметив это, строим соответствующее дедуктивное умозаключение. Оно является прямым доказательством рассматриваемого утверждения.

В косвенном доказательстве рассуждение идет как бы окольным путем. Вместо того чтобы прямо отыскивать аргументы для выведения из них доказываемого положения, формулируется антитезис, отрицание этого положения. Далее тем или иным способом показывается несостоятельность антитезиса. По закону исключенного третьего, если одно из противоречащих друг другу утверждений ошибочно, второе должно быть верным. Антитезис ошибочен, значит, тезис является верным.

Допустим, нужно построить косвенное доказательство такого весьма тривиального тезиса: «Квадрат не является окружностью», Выдвигается антитезис: «Квадрат есть окружность», Необходимо показать ложность данного утверждения. С этой целью выводим из него следствия. Если хотя бы одно из них окажется ложным, это будет означать, что и само утверждение, из которого выведено следствие, также ложно. Неверным является, в частности, такое следствие: у квадрата нет углов. Поскольку антитезис ложен, исходный тезис должен быть истинным.

Другой пример. Врач, убеждая пациента, что тот не болен гриппом, рассуждает так. Если бы действительно был грипп, имелись бы характерные для него симптомы: головная боль, повышенная температура и т.п. Но ничего подобного нет. Значит, нет и гриппа.

Это опять-таки косвенное доказательство. Вместо прямого обоснования тезиса выдвигается антитезис, что у пациента в самом деле грипп. Из антитезиса выводятся следствия, но они опровергаются объективными данными. Это говорит, что допущение о гриппе неверно. Отсюда следует, что тезис «Гриппа нет» истинен.

Доказательства от противного обычны в наших рассуждениях, особенно в споре. При умелом применении они могут обладать особенной убедительностью. […]

Разновидности индукции

В индуктивном умозаключении связь посылок и заключения не опирается на логический закон, и заключение вытекает из принятых посылок не с логической необходимостью, а только с некоторой вероятностью. Индукция может давать из истинных посылок ложное заключение; ее заключение может содержать информацию, отсутствующую в посылках. Понятие индукции (индуктивного умозаключения) не является вполне ясным. Индукция определяется, в сущности, как «недедукция» и представляет собой еще менее ясное понятие, чем дедукция. Можно тем не менее указать относительно твердое «ядро» индуктивных способов рассуждения. В него входят, в частности, неполная индукция, так называемые перевернутые законы логики, подтверждение следствий, целевое обоснование и подтверждение общего положения с помощью примера. Типичным примером индуктивного рассуждения является также аналогия.

Неполная индукция

Индуктивное умозаключение, результатом которого является общий вывод о всем классе предметов на основании знания лишь некоторых предметов данного класса, принято называть неполной, или популярной, индукцией.

Например, из того, что инертные газы гелий, неон и аргон имеют валентность, равную нулю, можно сделать общий вывод, что все инертные газы имеют эту же валентность. Это неполная индукция, поскольку знание о трех инертных газах распространяется на все такие газы, включая не рассматривавшиеся специально криптон и ксенон.

Наряду с неполной индукцией принято выделять в качестве особого вида индуктивного рассуждения полную индукцию. В ее посылках о каждом из предметов, входящих в рассматриваемое множество, утверждается, что он имеет определенное свойство. В заключении говорится, что все предметы данного множества обладают этим свойством.

К примеру, учитель, читая список учеников какого-то класса, убеждается, что каждый названный им присутствует. На этом основании учитель делает вывод, что присутствуют все ученики.

В полной индукции заключение необходимо, а не с некоторой вероятностью вытекает из посылок. Эта индукция является, таким образом, разновидностью дедуктивного умозаключения. […]

Аналогия

Существует интересный способ рассуждения, требующий не только ума, но и богатого воображения, исполненный поэтического полета, но не дающий твердого знания, а нередко и просто вводящий в заблуждение. Этот очень популярный способ – умозаключение по аналогии.

Ребенок видит в зоопарке маленькую обезьянку и просит родителей купить ему этого «человечка в шубе», чтобы дома можно было играть и разговаривать с ним. Ребенок убежден, что обезьяна – это человек, но только в шубе, что она умеет, подобно человеку, играть и разговаривать. Откуда это убеждение? По внешнему виду, мимике, жестам обезьяна напоминает человека. Ребенку кажется, что с нею, как и с человеком, можно играть и говорить.

Познакомившись с журналистом, мы узнаем, что этот интеллигентный, широко образованный человек свободно говорит по-английски, по-немецки и по-французски. Встретив затем другого журналиста, интеллигентного, образованного, хорошо владеющего английским и немецким языками, мы можем не удержаться от искушения и спросить, не говорит ли он и по-французски.

Формы, в которых проявляется и осознается проблемная ситуация, очень разнообразны. Далеко не всегда она обнаруживает себя в виде прямого вопроса, вставшего в самом начале исследования. Мир проблем так же сложен, как и порождающий их процесс познания. Выявление проблем связано с самой сутью творческого, мышления. Парадоксы представляют собой наиболее интересный случай неявных, безвопросных способов постановки проблем. Парадоксы обычны на ранних стадиях развития научных теорий, когда делаются первые шаги в еще неизученной области и нащупываются самые общие принципы подхода к ней.

Парадоксы и логика

В широком смысле парадокс — это положение, резко расходящееся с общепринятыми, устоявшимися, ортодоксальными мнениями. «Общепризнанные мнения и то, что считают делом давно решенным, чаще всего заслуживают исследования» (ГЛихтенберг). Парадокс – начало такого исследования.

Варианты парадокса «Лжеца»

Если высказывание ложно, то говорящий сказал правду, и значит, сказанное им не является ложью. Если же высказывание не является ложным, а говорящий утверждает, что оно ложно, то это его высказывание ложно. Оказывается, таким образом, что, если говорящий лжет, он говорит правду, и наоборот.

В средние века распространенной была такая формулировка:

– Сказанное Платоном – ложно, – говорит Сократ.

– То, что сказал Сократ, – истина, – говорит Платон.

Парадокс «Лжец» произвел громадное впечатление на греков. И легко понять почему. Вопрос, который в нем ставится, с первого взгляда кажется совсем простым: лжет ли тот, кто говорит только то, что он лжет? Но ответ «да» приводит к ответу «нет», и наоборот. И размышление ничуть не проясняет ситуацию. За простотой и даже обыденностью вопроса оно открывает какую-то неясную и неизмеримую глубину.

Ходит даже легенда, что некий Филит Косский, отчаявшись разрешить этот парадокс, покончил с собой. Говорят также, что один из известных древнегреческих логиков, Диодор Кронос, уже на склоне лет дал обет не принимать пищу до тех пор, пока не найдет решение «Лжеца», и вскоре умер, так ничего и не добившись.

В новое время «Лжец» долго не привлекал никакого внимания. В нем не видели никаких, даже малозначительных затруднений, касающихся употребления языка. И только в наше, так называемое новейшее время развитие логики достигло наконец уровня, когда проблемы, стоящие, как представляется, за этим парадоксом, стало возможным формулировать уже в строгих терминах.

Теперь «Лжец» – этот типичный бывший софизм – нередко именуется королем логических парадоксов. Ему посвящена обширная научная литература. И тем не менее, как и в случае многих других парадоксов, остается не вполне ясным, какие именно проблемы скрываются за ним и как следует избавляться от него.

Язык и метаязык

Сейчас «Лжец» обычно считается характерным примером тех трудностей, к которым ведет смешение двух языков: языка, на котором говорится о лежащей вне его действительности, и языка, на котором говорят о самом первом языке.

В повседневном языке нет различия между этими уровнями: и о действительности, и о языке мы говорим на одном и том же языке. Например, человек, родным языком которого является русский язык, не видит никакой особой разницы между утверждениями: «Стекло прозрачно» и «Верно, что стекло прозрачно», хотя одно из них говорит о стекле, а другое – о высказывании относительно стекла.

Если бы у кого-то возникла мысль о необходимости говорить о мире на одном языке, а о свойствах этого языка – на другом, он мог бы воспользоваться двумя разными существующими языками, допустим русским и английским. Вместо того чтобы просто сказать: «Корова – это существительное», сказал бы «Корова is a noun», а вместо: «Утверждение «Стекло не прозрачно» ложно» произнес бы «The assertion «Стекло не прозрачно» is false». При таком использовании двух разных языков сказанное о мире ясно отличалось бы от сказанного о языке, с помощью которого говорят о мире. В самом деле, первые высказывания относились бы к русскому языку, в то время как вторые – к английскому.

Если бы далее нашему знатоку языков захотелось высказаться по поводу каких-то обстоятельств, касающихся уже английского языка, он мог бы воспользоваться еще одним языком. Допустим немецким. Для разговора об этом последнем можно было бы прибегнуть, положим, к испанскому языку и т.д.

Получается, таким образом, своеобразная лесенка, или иерархия, языков, каждый из которых используется для вполне определенной цели: на первом говорят о предметном мире, на втором — об этом первом языке, на третьем — о втором языке и т.д. Такое разграничение языков по области их применения — редкое явление в обычной жизни. Но в науках, специально занимающихся, подобно логике, языками, оно иногда оказывается весьма полезным. Язык, на котором рассуждают о мире, обычно называют предметным языком. Язык, используемый для описания предметного языка, именуют метаязыком.

Ясно, что, если язык и метаязык разграничиваются указанным образом, утверждение «Я лгу» уже не может быть сформулировано. Оно говорит о ложности того, что сказано на русском языке, и, значит, относится к метаязыку и должно быть высказано на английском языке. Конкретно оно должно звучать так: «Everything I speak in Russian is false» («Все сказанное мной по-русски ложно»); в этом английском утверждении ничего не говорится о нем самом, и никакого парадокса не возникает.

Различение языка и метаязыка позволяет устранить парадокс «Лжеца». Тем самым появляется возможность корректно, без противоречия определить классическое понятие истины: истинным является высказывание, соответствующее описываемой им действительности.

Как показал польский логик А. Тарский, классическое определение истины должно формулироваться в языке более широком, чем тот язык, для которого оно предназначено. Иными словами, если мы хотим указать, что означает оборот «высказывание, истинное в данном языке», нужно, помимо выражений этого языка, пользоваться также выражениями, которых в нем нет.

Границы между языком и метаязыком в семантически замкнутом языке не существует. Средства его настолько богаты, что позволяют не только что-то утверждать о внеязыковой реальности, но и оценивать истинность таких утверждений. Этих средств достаточно, в частности, для того, чтобы воспроизвести в языке антиномию «Лжец». Семантически замкнутый язык оказывается, таким образом, внутренне противоречивым. Каждый естественный язык является, очевидно, семантически замкнутым.

Единственно приемлемый путь для устранения антиномии, а значит, и внутренней противоречивости, согласно Тарскому, – отказ от употребления семантически замкнутого языка. Этот путь приемлем, конечно, только в случае искусственных, формализованных языков, допускающих ясное подразделение на язык и метаязык. В естественных же языках с их неясной структурой и возможностью говорить обо всем на одном и том же языке такой подход не очень реален. Ставить вопрос о внутренней непротиворечивости этих языков не имеет смысла. Их богатые выразительные возможности имеют и свою обратную сторону – парадоксы. […]

В заключение этого разговора о «Лжеце» можно вспомнить курьезный эпизод из того времени, когда формальная логика еще преподавалась в школе. В учебнике логики, изданном в конце 40-х годов, школьникам восьмого класса предлагалось в качестве домашнего задания – в порядке, так сказать, разминки – найти ошибку, допущенную в этом простеньком на вид утверждении: «Я лгу». И, пусть это не покажется странным, считалось, что школьники в большинстве своем успешно справлялись с таким заданием. […]

Неразрешимый спор

Озадаченный таким оборотом дела, Протагор посвятил этому спору с Еватлом особое сочинение «Тяжба о плате». К сожалению, оно, как и большая часть написанного Протагором, не дошло до нас. Тем не менее нужно отдать должное Протагору, сразу почувствовавшему за простым судебным казусом проблему, заслуживающую специального исследования.

Г. Лейбниц, сам юрист по образованию, также отнесся к этому спору всерьез. В своей докторской диссертации «Исследование о запутанных казусах в праве» он пытался доказать, что все случаи, даже самые запутанные, подобно тяжбе Протагора и Еватла, должны находить правильное разрешение на основе здравого смысла. По мысли Лейбница, суд должен отказать Протагору за несвоевременностью предъявления иска, но оставить, однако, за ним право потребовать уплаты денег Еватлом позже, а именно после первого выигранного им процесса.

Ссылались, в ча



Поделиться:


Последнее изменение этой страницы: 2016-04-07; просмотров: 1856; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.28.160 (0.015 с.)