Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Архитектура 32-разрядного микропроцессораСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
В 1985 году фирма Intel выпустила 32-разрядный микропроцессор, ставший родоначальником семейства IA-32. Развитие этого семейства прошло ряд этапов, среди которых можно выделить следующие: реализация блока обработки чисел с плавающей запятой непосредственно на кристалле МП (микропроцессор I486), введение MMX -технологии обработки данных с фиксированной точкой по принципу SIMD - singl instruction multi data (один поток команд - множество потоков данных) в микропроцессоре Pentium MMX и развитие этой технологии на числа с плавающей запятой (SSE - streaming SIMD Extention), появившееся впервые в МП Pentium III. Однако основные черты этой архитектуры вплоть до настоящего времени остаются неизменными. Архитектура 32-разрядного микропроцессора существенно отличается от архитектуры 16-разрядного. Некоторые из этих отличий чисто количественные, другие носят принципиальный характер. Главное внешнее отличие - увеличение разрядности шины данных и шины адреса до 32 бит. Это, в свою очередь, связано с изменениями в разрядности внутренних элементов микропроцессора и в механизме выполнения некоторых процессов, например, формирования физического адреса. Регистры блока обработки чисел с фиксированной точкой стали 32-разрядными. К каждому из них можно обращаться как к одному двойному слову (32 разряда). К младшим 16 разрядам этих регистров можно обращаться так же, как и в 16-разрядном микропроцессоре. В блоке сегментных регистров произошли как количественные, так и качественные изменения. К используемым в реальном режиме четырем регистрам CS, DS, SS и ES добавлены еще два: FS и GS. Хотя разрядность регистров этого блока осталась прежней (каждый по 16 бит), в формировании физического адреса оперативной памяти они используются по-другому. При работе микропроцессора в так называемом защищенном режиме они предназначаются для поиска дескриптора (описателя) сегмента в соответствующих системных таблицах, а уже в дескрипторе хранится базовый адрес и атрибуты сегмента. Формирование адреса в этом случае выполняет блок сегментации диспетчера памяти. Если помимо сегментов память разбита еще и на страницы, то окончательное вычисление физических адресов выполняет блок управления страницами. Начиная с микропроцессора I486, в состав кристалла микропроцессора входит блок обработки чисел с плавающей запятой, включающий в себя восемь 80-разрядных регистров для представления знаков, мантисс и порядков таких чисел. На кристалле микропроцессора располагается также внутренняя кэш-память, которая представляет собой особым образом организованную быстродействующую буферную память, предназначенную для хранения наиболее часто используемой информации (команд и данных). В различных моделях микропроцессоров объем кэш-памяти составляет от 8 Кбайт до 512 Кбайт. Микропроцессор на аппаратном уровне поддерживает мультипрограммный режим работы ЭВМ, то есть возможность иметь в памяти одновременно несколько готовых к выполнению программ, запуск которых осуществляется операционной системой в соответствии с алгоритмами ее функционирования либо в зависимости от особых ситуаций, складывающихся в работе внешних устройств. С этой возможностью неразрывно связаны средства защиты памяти, которые обеспечивают контроль над неразрешенными взаимодействиями между отдельными программами. Они включают в себя защиту при управлении памятью и защиту по привилегиям. Главные особенности расширенного формата команды - возможность использовать любой из регистров общего назначения в любом из режимов адресации, а также добавление еще одного режима адресации - относительного базового индексного с масштабированием. При этом эффективный адрес формируется следующим образом: ЭА = (base) + (index) · scale + disp, где (base) - значение базового регистра; (index) - значение индексного регистра; scale - величина масштабного множителя (scale = 1,2,3,4); disp - значение смещения, закодированного в самой команде. Отметим, что в 32-разрядной архитектуре эффективный адрес обычно называют смещением (offset), в то же время отличая его от смещения, кодируемого в самой команде (displacement). Разрядная архитектура ПЭВМ. Win64-код объединяет в себе основные возможности 32-разрядного кода, а также включает изменения, связанные с повышением разрядности. В распоряжении программиста оказываются: · 64-разрядные указатели; · 64-разрядные типы данных; · 32-разрядные типы данных; · интерфейс Win64 API. Обратите внимание, что 32-разрядные типы данных не исчезли при повышении разрядности платформы (как было с 16-разрядными типами данных при переходе к Win32). Это связано с тем, что даже в 64-разрядных приложениях в большинстве случаев переменные не требуют объема памяти в 8 байт, поэтому использование 64-разрядных типов в таких случаях оказалось бы крайне неэффективным. Операционной системе пришлось бы дописывать нули в старшие разряды, чтобы увеличить размер данных до 8 байт (такие данные к тому же очень неудобно считывать). Это привело бы к снижению производительности. Иная участь постигла 32-разрядные указатели: они полностью исчезли. Дело в том, что использование 32-разрядных указателей накладывает ограничение на объем адресуемой памяти. Например, одним из главных преимуществ плоской модели памяти (она является основной для программирования 32-разрядных приложений для платформы NT), использующей 32-разрядные указатели, является возможность создания сегментов объемом до 4 Гбайт. Новые 64-разрядные указатели обеспечивают возможность адресации до 16 Тбайт памяти (1 Тбайт = 1012 Мбайт). Современными бизнес-приложениями этот объем вполне востребован. Функции в Win64 API претерпели незначительные изменения. Только названия некоторых из них были изменены так, чтобы отразить принадлежность к 64-разрядной платформе. В большинстве случаев изменениям подверглись лишь типы параметров, являющихся аргументами вызова функций. Все остальные преимущества (возможность отказаться от использования файлов подкачки и т. д.) связаны либо с увеличившимся объемом адресации, либо с новыми типами данных. Конструктивное исполнение системных плат. Форм фактор Конструкция системной платы ЭВМ Матери́нская пла́та (англ. motherboard, MB, также используется название англ. mainboard — главная плата; сленг. мама, мать, материнка) — это сложная многослойная печатная плата, на которой устанавливаются основные компоненты персонального компьютера (центральный процессор, контроллер ОЗУ и собственно ОЗУ, загрузочное ПЗУ, контроллеры базовых интерфейсов ввода-вывода). Как правило, материнская плата содержит разъёмы (слоты) для подключения дополнительных контроллеров, для подключения которых обычно используются шины USB, PCI и PCI-Express. Центральный процессор Набор системной логики (англ. chipset) — набор микросхем, обеспечивающих подключение ЦПУ к ОЗУ и контроллерам периферийных устройств. Как правило, современные наборы системной логики строятся на базе двух СБИС: «северного» и «южного мостов». Северный мост (англ. Northbridge), MCH (Memory controller hub), системный контроллер — обеспечивает подключение ЦПУ к узлам, использующим высокопроизводительные шины: ОЗУ, графический контроллер. Для подключения ЦПУ к системному контроллеру могут использоваться такие FSB-шины, как Hyper-Transport и SCI. Обычно к системному контроллеру подключается ОЗУ. В таком случае он содержит в себе контроллер памяти. Таким образом, от типа применённого системного контроллера обычно зависит максимальный объём ОЗУ, а также пропускная способность шины памяти персонального компьютера. Но в настоящее время имеется тенденция встраивания контроллера ОЗУ непосредственно в ЦПУ (например, контроллер памяти встроен в процессор в AMD K8 и Intel Core i7), что упрощает функции системного контроллера и снижает тепловыделение. В качестве шины для подключения графического контроллера на современных материнских платах используется PCI Express. Ранее использовались общие шины (ISA, VLB, PCI) и шина AGP. Южный мост (англ. Southbridge), ICH (I/O controller hub), периферийный контроллер — содержит контроллеры периферийных устройств (жёсткого диска, Ethernet, аудио), контроллеры шин для подключения периферийных устройств (шины PCI, PCI-Express и USB), а также контроллеры шин, к которым подключаются устройства, не требующие высокой пропускной способности (LPC — используется для подключения загрузочного ПЗУ; также шина LPC используется для подключения мультиконтроллера (англ. Super I/O) — микросхемы, обеспечивающей поддержку «устаревших» низкопроизводительных интерфейсов передачи данных: последовательного и параллельного интерфейсов, контроллера клавиатуры и мыши). Как правило, северный и южный мосты реализуются в виде отдельных СБИС, однако существуют и одночиповые решения. Именно набор системной логики определяет все ключевые особенности материнской платы и то, какие устройства могут подключаться к ней. Оперативная память (также оперативное запоминающее устройство, ОЗУ) — в информатике — память, часть системы памяти ЭВМ, в которую процессор может обратиться за одну операцию (jump, move и т. п.). Предназначена для временного хранения данных и команд, необходимых процессору для выполнения им операций. Оперативная память передаёт процессору данные непосредственно, либо через кэш-память. Каждая ячейка оперативной памяти имеет свой индивидуальный адрес. ОЗУ может изготавливаться как отдельный блок или входить в конструкцию однокристальной ЭВМ или микроконтроллера. Загрузочное ПЗУ — хранит ПО, которое исполняется сразу после включения питания. Как правило, загрузочное ПЗУ содержит BIOS, однако может содержать и ПО, работающие в рамках EFI.
|
||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 1069; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.15.136.88 (0.008 с.) |