![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Витамины и их значение в питании.Содержание книги
Поиск на нашем сайте
Уже давно человечество заметило, что при длительном однообразном питании, в случаях исключения каких-то продуктов из рациона, особенно в условиях длительных экспедиций, довольно часто возникали различные заболевания. На первый взгляд не виделось первопричины. Однако с накоплением этого опыта становилось ясно, что в пище присутствуют какие-то специфические компоненты в очень небольших количествах, но обладающие большим регулирующим действием на обмен веществ. В 1880 г. русский ученый Николай Иванович Лунин, поставив эксперимент на животных, высказал следующее: "Если невозможно обеспечить жизнь белками, жирами, углеводами, минеральными солями и водой, то из этого следует, что в пище содержатся и другие вещества, необходимые для питания". Позднее этот взгляд подтвердил в эксперименте голландский ученый Эйкман при оценке характера питания заключенных, присланных из метрополии на острова Ява и Морадур (Индонезия). Начиная питаться полированным рисом, у заключенных быстро развивались явления периферического полиневрита. И в то же время при использовании воды, в которой рис предварительно замачивался, симптомы полиневрита смягчались. В 1911 г. польский ученый Казимир Функ, помня о наблюдениях Эйкмана, из настоя отрубей риса выделил вещество, содержащее аминную группу, которое у подопытных животных приводило к исчезновению явлений полиневрита. Функ назвал эту аминную группу "амином жизни", т.е. "Витамин". Впоследствии, при открытии других витаминов, аминных групп не обнаруживалось, но название "витамин" прочно вошло в лексику научных исследований, неся определенную смысловую нагрузку. В 1912 г. Гопкинс, использовав данные Лунина, Эйкмана, Функа и собственные исследования, определенно высказал мысль, что все витамины (или почти все) не синтезируются в организме. А все заболевания, связанные с недостаточностью витаминов, следует считать болезнями пищевой недостаточности. (слайд №86) "В настоящее время большинство витаминов — это низкомолекулярные соединения органической природы, не синтезирующиеся в организме человека, поступающие извне в составе пищи, не обладающие энергетическими и пластическими свойствами и проявляющие биологическое действие в малых дозах".
Биохимическая сущность витаминов, веществ разнообразных по своей химической природе, сводится главным образом к осуществлению каталитических функций. Находясь в составе ферментов, они катализируют реакции превращения белков, жиров, углеводов, причем отдельные химические процессы катализируются одновременно несколькими взаимодействующими витаминами. При этом свои функции биокатализаторов витамины выполняют, находясь в тканях организма в относительно малых количествах. Свою столь активную роль в обменных процессах большинство витаминов выполняют, находясь в составе ферментов. К настоящему времени известно свыше 100 тканевых и клеточных ферментов, в состав которых входят витамины и примерно столько же различных биохимических реакций, невозможных без витаминов. В состав специфического фермента витамины входят в виде простетической группы небелкового порядка — кофермента, который вступает в соединение с белковым ингредиентом — апоферментом, синтезируемым в организме. Сами же витамины, как правило, в организме не синтезируются и должны поступать извне, с пищей. В настоящее время известно более 20 витаминов и витаминоподобных веществ. Важнейшие из них сгруппированы в таблице 1 на основании характера физиологического влияния на организм. (сделать слайд №87)
При нарушении обмена витаминов в организме могут наблюдаться такие патологические состояния, как гиповитаминозы и авитаминозы. Несмотря на то, что с момента открытия витаминов прошло более 100 лет, вопрос изучения роли последних до настоящего времени остается актуальным. По данным ВОЗ, и в наши дни наблюдаются массовые заболевания берибери, пеллагрой, рахитом, сезонные заболевания цингой. В чистой форме авитаминозы не встречаются, однако гиповитаминозные состояния наблюдают довольно часто (по данным ВОЗ, 80% населения земного шара страдают гиповитаминозными состояниями). Причины нарушения витаминного обмена довольно многообразны. Принято выделять две основные группы факторов, обусловливающих развитие витаминной недостаточности: экзогенные, внешние причины, приводящие к первичным гипо- и авитаминозам; и эндогенные, внутренние, обусловливающие развитие вторичных гипо- и авитаминозов. По механизму развития витаминной недостаточности различают несколько форм: Алиментарная форма обусловлена недостаточным поступлением витамина с пищей или возникает при нормальном поступлении витаминов, но при нарушении соответствия компонентов в рационе. Так установлено, что увеличение углеводов в рационе требует увеличения суточной нормы витамина В1 что, в свою очередь, увеличивает расход также витаминов В2 и С. Однако, несмотря на большую роль качественных нарушений режима питания, основное практическое значение приобретают нарушения количественные, связанные с понижением содержания отдельных витаминов в готовой пище. Главнейшими причинами снижения количества отдельных витаминов в готовой пище являются: а) неправильное хранение продуктов, в том числе овощей, приводящее к разрушению некоторых витаминов (особенно витамина С); б) одностороннее питание, особенно с выключением овощей, являющихся основными поставщиками витаминов С, Р и др.; в) нарушение правил кулинарной обработки продуктов, которые вместе с неудовлетворительным их хранением могут приводить к значительному уменьшению количества витаминов в готовой пище; г) неправильное хранение и задержка выдачи готовых блюд. Обычно эти причины сочетаются между собой, наносят серьезный ущерб содержанию витаминов в суточном рационе, приводя к развитию алиментарных форм витаминной недостаточности. Резорбционная форма обусловлена причинами внутреннего порядка. Среди этих причин наибольшее внимание заслуживает частичное разрушение витаминов в пищеварительном тракте и нарушение их всасывания. Так установлено, что при заболеваниях желудка, сопровождающихся понижением кислотности желудочного сока, тиамин (т.е. В1, никотиновая кислота (витамин РР), а также витамин С подвергаются значительному разрушению. При резекции пилорического отдела желудка легко развивается пеллагра, т.е. авиминоз РР, а при поражении дна желудка — гиперхромная анемия Аддисон- Бирмера, являющаяся витамин В12-дефицитной анемией. При язвенной болезни желудка и двенадцатиперстной кишки нарушается обмен витаминов А, С, никотиновой кислоты, каротина. Различного рода заболевания кишечника приводят к понижению всасывания различных витаминов, что также может приводить к гиповитаминозам. Дессимиляционная форма связана с физиологическими сдвигами в обмене веществ, в том числе витаминов. Эта форма гиповитаминозов может наблюдаться: при нарушении соотношения отдельных компонентов пищи (о чем уже говорилось выше), при физической и нервной нагрузке, при работе в условиях низкого парциального давления кислорода (например, в горной местности), при работе в условиях высокой температуры, низкой температуры (особенно при сочетании с УФЛ-недостаточностью), при ряде заболеваний (особенно инфекционных), при лечении сульфаниламидами и антибиотиками (в силу влияния на кишечную микрофлору и связанное с этим нарушение синтеза бактерий отдельных витаминов).
Перейдем к рассмотрению физиологической роли витаминов и источников обеспечения ими организма человека. Как вам известно, все витамины делятся на водорастворимые и жирорастворимые. Рассмотрим первую группу. Наиболее важным витамином этой группы является витамин С. (слайд №88) Витамин С - сильный антиоксидант и кофактор многих ферментов. Биологическое действие витамина С: l Антиоксидантное – прямая защита белков, липидов, ДНК, РНК от свободныхрадикалов и перекисей, защищает SH- группы ферментов, глутатиона, восстанавливает активность витамина Е. l детоксикационное, l способствует усвоению железа и нормальному кроветворению - увеличивает адсорбцию железа из кишечного тракта путем комплексообразования и др. l участвует в синтезе коллагена; l в синтезе норадреналина, серотонина; l участвует в окислительно-восстановительных процессах, тканевом дыхании, l обмене аминокислот, l улучшает использование углеводов, l нормализует обмен холестерина. (слайд №89) Таким образом, витамин С (аскорбиновая кислота): l стимулирует рост, l стимулирует деятельность эндокринных желез, особенно надпочечников, l улучшает функцию печени. l повышающее неспецифическую устойчивость и сопротивляемость, умственную и физическую работоспособность, l стресс-протекторное, l иммуностимулирующее, l защищающее сосудистую стенку, а l антиатеросклеротическое, l репаративное и ранозаживляющее, l восстанавливающее структуру костной ткани и хрящевой ткани, косметическое, l онкопротекторное, l геропротекторное l повышает сопротивляемость организма инфекциям, интоксикациям химическими веществами, перегреванию, охлаждению, кислородному голоданию. (слайд №90) Организм человека не обладает способностью синтезировать витамин С, поэтому необходим его ежедневный прием с пищей. При отсутствии этого витамина развивается цинга. Суточная потребность в витамине С для мужчин до 40 лет составляет 50—100 мг, женщин — 65—85 в зависимости от тяжести физической работы, детей — 30—70 мг.
Потребность в витамине С увеличивается при значительном психическом напряжении, тяжелой физической работе, в условиях жаркого и холодного климата. Спортсменам рекомендуется дополнительно принимать аскорбиновую кислоту для повышения уровня физической работоспособности и ускорения восстановительных процессов, а также в зимне-весенний период (100— 200 мг в таблетках), когда содержание его в пище значительно снижается. Основные пищевые источники витамина С — овощи и фрукты, особенно сухие плоды шиповника, черная смородина, красный перец, петрушка, укроп, щавель, зеленый лук, томаты, лимоны, апельсины, мандарины, капуста. (слайд №91) Витамин Р (рутин). Усиливает действие аскорбиновой кислоты, способствует восстановлению дегидроаскорбиновой кислоты в аскорбиновую. Основная его функция — уменьшение проницаемости капилляров, но только в присутствии витамина С, потребность в котором при этом уменьшается. Совместно с аскорбиновой кислотой витамин Р участвует в процессах окисления и восстановления. (слайд №92) Основные пищевые источники: черная смородина, лимоны, апельсины, красный перец, виноград, плоды шиповника, красной смородины. Суточная потребность организма здорового взрослого человека в витамине составляет 25 — 50 мг, детей — 10-25мг. (слайд №93) Витамин PP. В организме человека он участвует в переносе электронов водорода от окисляющихся субстратов в процессе клеточного дыхания, обеспечивает его нормальный рост и развитие. (слайд №94) Основные пищевые источники: говядина, печень, почки, сердце, рыба (лосось, сельдь). Зерновые продукты содержат витамин РР в неусвояемой форме. Суточная потребность здорового взрослого человека в витамине РР составляет 14-25 мг, детей — 5-20, спортсменов - 6-8 мг. Перейдем к рассмотрению большой группы водорастворимых Витаминов группы В. (слайд №95) Витамин В 1 (тиамин) участвует в биохимических процессах углеводного обмена, окислительном декарбоксилировании кетокислот, обеспечении нормального роста. Он играет важную роль в деятельности нервной системы человека, обменных процессах в коре головного мозга и периферических нервных волокон. Поэтому его недостаток в пище приводит в первую очередь к нарушению деятельности нервной ткани, а затем к ее дегенерации. Витамин В1 участвует также в азотистом обмене и в меньшей степени — в жировом и минеральном. Потребность человека в витамине В1 возрастает при физической нагрузке и нервном напряжении. (слайд №96) Суточная потребность в витамине В1 здоровых мужчин в возрасте до 40 лет составляет 1,4-2,4 мг, женщин - 1,4-1,9 (в более старшем возрасте нормы несколько ниже), детей — 0,5—2,0, спортсменов — 6—8 мг. Суточные нормы приема возрастают также при высокой внешней температуре (из-за потери с потом), при работе на холоде и в случае значительного потребления углеводов, чтобы обеспечить процесс их расщепления. Основные пищевые источники: зерна злаков и хлебопродукты (ржаной и пшеничный хлеб грубого помола), бобовые (горох, фасоль), гречневая и овсяная крупа, пивные дрожжи, печень, почки.
(слайд №97) Витамин В 2 (рибофлавин ) в организме человека участвует в основных окислительно-восстановительных процессах (окислении жирных кислот), влияет на рост и развитие детского организма, обеспечивает световое и цветовое зрение. Этот витамин входит в состав ферментов, играющих важную роль в процессах биологического окисления. Он стимулирует рост и регенерацию тканей, участвует в синтезе гемоглобина. При его недостатке в пище снижается интенсивность окислительно-восстановительных процессов, ухудшаются использование белка пищи, всасываемость жиров, падает вес, возникает слабость, снижается физическая работоспособность, нарушается зрение. (слайд №98) Основные пищевые источники рибофлавина: пивные дрожжи, яйца, сыр, творог, молоко, гречневая крупа, бобовые, хлеб грубого помола, печень, почки. Суточная потребность здорового взрослого человека в витамине В6 составляет 1,9—3,0 мг, детей — 1,0—3,0, спортсменов — 6— 8 мг. Витамин B 5 (пантотеновая кислота) способствует синтезу кофермента А, обмену жирных кислот и стеаринов. Основные пищевые источники: бобовые и зерновые культуры, картофель, печень, яйца, рыба (лосось, семга). Суточная потребность здорового взрослого человека в витамине В5 составляет примерно 10 мг. (слайд №99) Витамин В 6 (пиродоксин) участвует в азотистом обмене, в синтезе серотонина и обмене жиров, в построении ферментов, связанных с обменом аминокислот, обеспечивает нормальный рост. При его недостатке в суточном пищевом рационе человека нарушается образование полиненасыщенных жирных кислот. Он необходим для нормальной деятельности центральной нервной системы. (слайд №100) Суточная потребность в нем здорового взрослого человека в зависимости от возраста, пола и тяжести работы составляет 1,5— 2,8, детей — 0,5—2,0 мг. Основные пищевые источники: дрожжи, печень, почки, мясо, сельдь, треска, тунец, лосось, зерна бобовых и злаков. (слайд №101) Витамин В 9 (фолиевая кислота). Необходим для обмена одноуглеродных соединений, синтеза нуклеиновых кислот, кроветворения (гемопоэз). Суточная потребность здорового взрослого человека в нем составляет 400 мкг, беременных — 800, кормящих — 600, детей — 50—400 мкг. Основные пищевые источники: салат, капуста, шпинат, петрушка, томаты, морковь, пшеница, рожь, печень, почки, говядина, яичный желток. (слайд №102) Витамин В 12 (цианкобаламин) представляет собой сложное комплексное соединение с большой биологической активностью. Он участвует в кроветворении (гемопоэзе), в ряде обменных процессов (переносе метильных групп, синтезе нуклеиновых кислот), улучшает состояние центральной нервной системы, положительно влияет на регенерацию нервных волокон и нервно-мышечных окончаний. Суточная потребность здорового взрослого человека в нем составляет 2 мкг, беременных — 3, кормящих — 2,5, детей — 0,5— 2,0 мкг. Основные пищевые источники: печень рыб, почки и печень рогатого скота, говядина, свинина, творог, молоко, яйца. ЖИРОРАСТВОРИМЫЕ ВИТАМИНЫ (слайд №103) (слайд №104) Витамин А (ретинол) — один из важнейших витаминов роста, необходимых для поддержания защитной функции слизистых оболочек и кожи, различных видов обмена веществ, а главное — для обеспечения нормального зрения. Витамин А входит в состав зрительных пигментов палочек сетчатки (родопсина) и колбочек (йодопсина). Поэтому лица, работа которых связана с особым напряжением зрения, необходимостью различать цвета и быстро адаптироваться к переходу от света к темноте, нуждаются в большем количестве (2—2,5 мг) этого витамина. Это же относится к спортсменам (стрелкам, баскетболистам, фехтовальщикам и др.). (слайд №105) Основные пищевые источники: печень трески, медицинский рыбий жир, летнее сливочное масло, жирный сыр, сельдь, печень, почки, желтки яиц, сметана, сливки, молоко. Источником каротина служат овощи и фрукты желто - и красно-оранжевого цвета: морковь, помидоры, тыква, дыня, красный перец, плоды шиповника, абрикосы, сливы, а также салат, щавель, капуста, зеленый горошек. Суточная потребность здорового взрослого человека в витамине А составляет 1,5 мг (5000 ME), спортсменов — 4—5, беременных и кормящих женщин — 2,0 (6600 ME), детей и подростков — 0,5-1,5 мг (1650-5000 ME). (слайд №106) Витамин D (кальциферол ) представляет собой группу витаминов, сходных по химической структуре и биологическому значению. Их основная роль — регулировать обмен фосфора и кальция в организме человека: обеспечить всасывание фосфора и кальция в тонком кишечнике и реабсорбцию (всасывание) фосфора в почечных канальцах и перенос кальция из крови в костную ткань. (слайд №107) При недостатке этого витамина нарушается отложение фосфора и кальция в костях, они становятся мягкими и хрупкими. У детей это проявляется в тяжелом заболевании — рахите.
Суточная потребность в нем взрослого здорового человека составляет 2,5 мкг (100 ME), беременных и кормящих женщин — 400—500 ME, детей — 500 ME. Основные пищевые источники: рыбий жир, печень рыб (трески, камбалы, морского окуня), икра, яичный желток. (слайд №108) Витамин Е (токоферол). Под этим названием объединен ряд соединений, близких по химической структуре и биологическому действию. Витамин Е предохраняет ненасыщенные липиды клеточных и субклеточных мембран от свободнорадикального окисления, способствуют сперматогенезу, развитию плода и течению беременности; участвует в окислительных процессах, способствует накоплению жирорастворимых витаминов, защищает от окисления ненасыщенные жирные кислоты. (слайд №109) Суточная потребность в нем взрослого здорового человека составляет 10—20 мг, детей — 0,5 мг/кг веса. Основные пищевые источники: растительные масла (подсолнечное, соевое, хлопковое, кукурузное), зеленые листья овощей. (слайд №110) Витамин К (филлохины) называют антигеморрагическим витамином, так как он участвует в процессах синтеза протромбина, способствует нормализации свертывания крови, снижает кровоточивость сосудов, связанную с гипопротромбинэмией. (слайд №111) Суточная потребность в нем взрослого здорового человека составляет 0,2— 0,3 мг, новорожденных детей - 1-12 мкг, беременных - 2-5 мг. Основные пищевые источники: шпинат, капуста, томаты, печень.
|
||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 794; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.195.178 (0.015 с.) |