Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Типовая структурная схема регенератораСодержание книги
Поиск на нашем сайте
Полная структурная схема регенератора, используемого в ЦСП на металлических кабелях (коаксиальных или симметричных) с линейным трехуровневым кодом типа ЧПИ или троичным, представлена на рир. 15.32, а осциллограммы, поясняющие его работу, — на рис. 15.33. Входной сигнал с линии (рис. 15.33, а) в квазитроичном коде проходит через входной линейный трансформатор 1, постоянный и переменный корректоры 2 и 3, усилитель 4 и поступает в блок 5. Последний представляет собой, например, многообмоточный трансформатор, в выходных обмотках I и II которого имеем откорректированный сигнал (рис. 15.33, б, в). Размах сигнала поддерживается постоянным за счет подключенной к выходной обмотке IV системы АРУ.
Она состоит из пикового детектора 6 и блока АРУ 7, в котором постоянное напряжение, пропорциональное , сравнивается с опорным напряжением . Далее сигнал ошибки усиливается и поступает на вход управления переменного корректора 3. С выходной обмотки III квазитроичный сигнал вида, показанного на рис. 15.33, б, проходит через блок формирования строб-импульсов 8. Последний построен по схеме рис. 15.28, расположение строб-импульсов на осциллограммах отмечено крестиками. После пороговых устройств и формирователей импульсов формируются стандартные импульсы «+1 (рис. 15.33, г) и «—1» (рис. 15.33, д). В выходной обмотке линейного трансформатора II образуется регенерированный сигнал в квазитроичном коде (рис. 15.33, е), который поступает в линию. С помощью линейных трансформаторов Iи II, так же как и в НУП аналоговых СП, происходит выделение тока дистанционного питания , передаваемого по фантомной цепи. В блоке дистанционного питания 12 образуются все питающие напряжения, необходимые для нормальной работы регенератора (см. параграф 4.1). Структурная схема регенератора, применяемого в современных волоконно-оптических ДСП, отличается от вышеописанной схемы (см. рис. 15.32) следующими основными признаками. Во-первых, на входе и выходе электрической схемы регенератора устанавливают согласующие блоки: приемный оптический модуль (ПрОМ) и передающий оптический модуль (ПОМ). ПрОМ состоит из фотодиода (типа или лавинного), который преобразует оптические импульсы в электрические, и предварительного усилителя; ПОМ содержит выходной импульсный усилитель и лазерный диод, который генерирует оптические импульсы во время передачи сигнала «1». Во-вторых, электрический сигнал на выходе ПрОМ является двоичным униполярным; поэтому используется только одно пороговое устройство и формирователь импульсов. Естественно, при этом отпадает необходимость также в линейных трансформаторах, поскольку ток ДП или передается по отдельным металлическим парам комбинированного волоконно-оптического кабеля (ВОК), или не передается вообще. Это особенно характерно при использовании одномодового ВОК с длиной волны оптического излучения 1,3 и 1,55 мкм, поскольку при этом длина участка регенерации составляет 50—100 км и нетрудно выбрать место для регенерационного пункта, где есть местная электросеть. Остальные функции регенератора — коррекция формы импульса, выделение тактовой частоты, автоматическая регулировка уровня и т.д. — в волоконно-оптических ДСП решаются практически так же, как и в ДСП на металлических кабелях (см. рис. 15.32).
|
||||
Последнее изменение этой страницы: 2017-02-19; просмотров: 363; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.38.176 (0.005 с.) |