Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Одноканальная модель смо с пуассоновским входным потоком и экспоненциальным распределением длительности обслуживания с ожиданием и ограничением на длину очередиСодержание книги
Поиск на нашем сайте
Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание — простейший поток с интенсивностью λ,. Интенсивность потока обслуживания равна μ. Длительность обслуживания — случайная величина, подчиненная показательному закону распределения. Поток обслуживании является простейшим пуассоновским потоком событий. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания. Данная система не может вместить более N -требований. Граф состояний СМО в этом случае имеет вид, показанный на р. Состояния СМО имеют следующую интерпретацию:S0 — «канал свободен»; S1 — «канал занят» (очереди нет);S2 — «канал занят» (одна заявка стоит в очереди);Sn — «канал занят» (п — 1 заявок стоит в очереди);SN — «канал занят» (N — 1 заявок стоит в очереди). Стационарный процесс в данной системе будет описываться следующей системой алгебраических уравнений: п — номер состояния. Решение приведенной выше системы уравнений для нашей модели СМО имеет вид Тогда Следует отметить, что выполнение условия стационарности для данной СМО не обязательно, поскольку число допускаемых в обслуживающую систему заявок контролируется путем введения ограничения на длину очереди, а не соотношением между интенсивностями входного потока, т. е. не отношением λ/μ=ρ Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной (N — 1): вероятность отказа в обслуживании заявки: относительная пропускная способность системы абсолютная пропускная Продолжение способность: среднее число находящихся в системе заявок: среднее время пребывания заявки в системе: средняя продолжительность пребывания клиента в очереди: среднее число заявок в очереди:
Одноканальная модель смо с пуассоновским входным потоком и экспоненц распределением длительности обслуживания с ожиданием без ограничения длины очереди Стационарный режим функционирования данной СМО существует при t →∞ оо для любого n = 0, 1, 2,... и когда λ < μ. Система алгебраических уравнений, описывающих работу СМО при t →∞ для любого n = 0, 1, 2,..., имеет вид Решение данной системы уравнений имеет вид Характеристики одноканальной СМО с ожиданием, без ограничения на длину очереди, следующие: среднее число находящихся в системе клиентов на обслуживание: ; средняя продолжительность пребывания клиента в системе: ; среднее число клиентов в очереди на обслуживании: ; средняя продолжительность пребывания клиента в очереди:
|
||||
Последнее изменение этой страницы: 2017-02-10; просмотров: 202; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.205.114 (0.006 с.) |